7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois
ECRICOME 2007 voie E
1. EXERCICE. SoitaOn considère la fonctionun réel strictement positif.fadénie pour tout réeltstrictement positif par : 2 1a fa(t) =(t+ ) 2t ainsi que la suite(un)nNde nombre réels déterminée par son premier termeu0>0 et par la relation de récurrence : 8n2Nu=f(u) n+1a n
1.1. Etude des variations de la fonctionfa. 1. Déterminerla limite defa(t)lorsquettend vers+1lexistence. Justier dune asymptote oblique au voisinage de+1et donner la position de la courbe représentative defapar rapport à cette asymptote. 2. Déterminer la limite defa(t)lorsquettend vers0par valeurs positives. Interpréter graphiquement cette limite. + 3. Donnerlexpression de la fonction dérivée defasurRet dresser le tableau de variation defa. 4. Endéduire que : 8t >0fa(t)>a
1.2. Etude de la convergence de la suite(un)nN.. 1. Quedire de la suite(un)nNdans le cas particulier oùu0=a? 2. Dansla suite on revient au cas généralu0>0. Démontrer que : 1 0 8t > a0< f(t)< a 2 3. Montrerque pour tout entiern, non nul : u>a n