7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois

Publications similaires

EDHEC School of management
ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Concours dadmission sur classes préparatoires
MATHEMATIQUES Option économique Année 2001
La présentation, la lisibilité, lorthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans lappréciation des copies. Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage daucun document :seule lutilisation dune règle graduée est autorisée.
Lutilisation de toute calculatrice et de tout matériel électronique est interdite.
Exercice 1 Edésigne un espace vectoriel réel surR;rapporté à sa baseB= (e1; e2; e3). On désigne paraun réel non nul et on considère lendomorphismefade E, déni par : fa(e1) = 0fa(e2) =fa(e3) =ae1+e2ae3 2 A. 1. (a)Ecrire la matriceAadefarelativement à la base B et calculera (b) Montrerque0est la seule valeur propre deAa. (c)AaEst-elle inversible ?est-elle diagonalisable ? 2. Onposeu1=ae1+e2ae3. 0 (a) MontrerqueB= (u1; e2; e3)est une base deE 0 1 0 0 1 0 @ A (b) Vérierque la matrice defarelativement à la baseBestK0 0= 0. 0 0 0 Dans la suite, on cherche à caractériser les endomorphismesgde E tels quegg=fa. 0 3. Onsuppose quun tel endomorphismegexiste et on note M sa matrice dansB. 2 (a) ExpliquerpourquoiM=Kpuis montrer queM K=KM.
1/3