Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

MATHEMATIQUES E.M.LYON Voie Eco 2004
PREMIER EXERCICE Onconside`relapplicationf:RR,eopeintud´ruottRpar : t 2e f(t) =2 1 +t 1. Dresserle tableau de variation defsurRcomprenant les limites defen−∞et en +. ´ t2 2 2. a)Etablir, pour toutt[0,+[ :2ett >1 +0 ett1 +t b)End´eduire: t[0,+[, f(t)> t 3.Onconside`relasuitere´elle(uneiapr)d´enu0= 1 et, pour toutnN: n0 un+1=f(un) ´ a) Etablirqueuntend vers +lorsquentend vers +. 6 ´ b) Ecrireun programme en Pascal qui calcule et affiche le plus petit entierntel queun>10 4.Onconside`relapplicationG:RRtrtou,pouneide´xRpar : Z +x G(x) =f(t)dt x a) MontrerqueGest impaire. 10 b) MontrerqueGest de classeCsurRet calculerG(x) pour toutxR. c) Quelleest la limite deG(x) lorsquextend vers +? ´ d) Etudierle sens de variation deGet dresser le tableau de variation deGsurRcomprenant les limites deGen−∞et en +. ` DEUXIEME EXERCICE On noteM3(Rsedrre´teorrordesmaeeldescatriccevecaps´rleirote)lslee,`aisl´´eenemr´tsIla matrice identit´edeM3(R),0 la matrice nulle deM3(R). Onconside`re,pourtoutematriceAdeM3(R), les ensemblesE1(A) etE2(A) suivants : E1(A) ={M∈ M3(R) ;A M=M}   2 E2(A) =M∈ M3(R) ;A M=AM Partie I 1. MontrerqueE1(A) est un sous-espace vectoriel deM3(R) On admettra queE2(A) est aussi un sous-espace vectoriel deM3(R) ´ 2. a)Etablir :E1(A)E2(A) b) Montrerque, siAest inversible, alorsE1(A) =E2(A) EML-2004-e Page1/ 3