Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

HEC 2000 mathematiques i classe prepa b/l

3 pages
CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARISDIRECTION DE L’ENSEIGNEMENTDirection des Admissions et concoursECOLE DES HAUTES ETUDES COMMERCIALESE.S.C.P.-E.A.P.ECOLE SUPERIEURE DE COMMERCE DE LYONCONCOURS D’ADMISSION SUR CLASSES PREPARATOIRESOPTION Lettre et Sciences-Humaines (B/L)MATHEMATIQUES IAnnØe 2000La prØsentation, la lisibilitØ, l’orthographe, la qualitØ de la rØdaction, la clartØ et la prØcision desraisonnements entreront pour une part importante dans l apprØciation des copies.Les candidats sont invitØs à encadrer dans la mesure du possible les rØsultats de leurs calculs.Ils ne doivent faire usage d aucun document : l’utilisation de toute calculatrice et de tout matØrielØlectronique est interdite.Seule l’utilisation d une rŁgle graduØe est autorisØe.Ce problŁme Øtudie deux suites de variables alØatoires. Il se compose de quatres parties.Si le candidat ne parvient pas à Øtablir un rØsultat demandØ, il l indiquera clairement, et il pourra pour la suiteadmettre ce rØsultat.Dans tout le problŁme, n dØsigne un entier naturel non nul.On considŁre une urne U contenant n boules numØrotØes de 1 à n:nOn tire une boule au hasard dans U : On note k le numØro de cette boule.nSi k est Øgal à 1; on arrŒte les tirages.Si k est supØrieur ou Øgal à 2; on enlŁve de l urne U les boules numØrotØs de k à n (il reste donc les boulesnnumØrotØs de 1 à k 1); et on e⁄ectue un nouveau tirage dans l urne.On rØpŁte ces tirages jusqu’à l obtention de la boule numØro 1 ...
Voir plus Voir moins
CHAMBRE DE COMMERCE ET DINDUSTRIE DE PARIS DIRECTION DE LENSEIGNEMENT Direction des Admissions et concours
ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON
CONCOURS DADMISSION SUR CLASSES PREPARATOIRES
OPTION Lettre et Sciences-Humaines (B/L) MATHEMATIQUES I Année 2000
La présentation, la lisibilité, lorthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans lappréciation des copies. Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage daucun document :lutilisation de toute calculatrice et de tout matériel électronique est interdite. Seule lutilisation dune règle graduée est autorisée.
Ce problème étudie deux suites de variables aléatoires.Il se compose de quatres parties. Si le candidat ne parvient pas à établir un résultat demandé, il lindiquera clairement, et il pourra pour la suite admettre ce résultat.
Dans tout le problème,ndésigne un entier naturel non nul.
On considère une urneUncontenantnboules numérotées de1àn: On tire une boule au hasard dansUn:On notekle numéro de cette boule. Sikest égal à1;on arrête les tirages. Sikest supérieur ou égal à2;on enlève de lurneUnles boules numérotés dekàn(il reste donc les boules numérotés de1àk1);et on e¤ectue un nouveau tirage dans lurne. On répète ces tirages jusquà lobtention de la boule numéro1: On noteXnla variable aléatoire égale au nombre des tirages nécessaires pour lobtention de la boule1: On noteYnla variable aléatoire égale à la somme des numéros des boules tirées. On noteE(Xn)etV(Xn)(respectivementE(Yn)etV(Yn)) lespérance et la variance deXn(respectivementYn):
Partie 1 n P1 11 1. Onposehn+1 += =  +: k2n k=1
1/3
Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin