Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

ISC 1999 Option technologique
Exercice 1    2 23 10 0    SoientA= 37 9etI1 0= 0 20 0 14 5 1. 2 2 (a) CalculerAeretd´isrnemi,upaetbtels queA=aA+bI. 1 (b)Ende´duirequelamatriceAest inversible et exprimer son inverseAen fonction deAetI, puis 1 calculerA. 2x+ 2y3z= 2 1 (c) Utiliserle calcul deA3edsrro´ueusreplot`yseemx7y+ 9z= 0 2x4y+ 5z=2 2.D´emontrerparr´ecurrenceque,pourtoutentiernatureln, on a : n nn n A= (1) [(12 )A+ (22 )I].
Exercice 2 u On rappelle que pour toutu,lxep´reeu=e. 1.Ond´enitlesdeuxfonctionsφetψsurR+par : 1 uu2 φ(u) =e1 +uetψ(u) =e1 +uu . 2 (a) Etudierles variations de la fonctionφsurR+on,cesirrustaelbatnoairavedutions,etend´eduierel signe deφsurR+. 0 (b)Montrerquepourtoutre´eludeR+,ψ(u) =φ(uoitcnofaledsnoitn.)nearialesvuired´edψsurR+, construiresontableaudevariations,etend´eduirelesignedeψsurR+. (c)Apartirdele´tudefaiteena)etb),montrerquepourtoutr´eelupositif ou nul on a : 1 u2 1u6e61u+u . 2 2. Pournntius[r0urelnonnul,ond´eeeitntanr,1] la fonctionfnpar : 2 x  2 x fn(x) =e nexpn 1 Z et on poseIn=fn(x)dx. 0 (a)Enutilisantladoubleine´galite´obtenue`alapartie Ic) , montrer que, pour toutxde [0,1], on a : 2 24 x xx 16fn(x)61+. 2 n n2n Ende´duireenfonctiondenun encadrement deIn. (b) Montrerque la suite (In)n>1srlamiti.eveontcesesice´rpteetnegr (c) Enutilisant l’encadrement deInobtenu en b), donner un encadrement den(In1), puis montrer que la suite (n(In.etirsseimalpretci´e))1ontcesteenrgve n>1
1