Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

CHAINES DE MARKOV CONSTRUCTIVES INDEXEES PAR Z
Jean BROSSARD et Christophe LEURIDAN PrepublicationdelInstitutFouriern  677 (2005) http ://www-fourier.ujf-grenoble.fr/prepublications.html
Resume NousnousinteressonsauxchaˆnesdeMarkov( X n ) n Z gouverneesparunere-lation de recurrence de la forme X n +1 = f ( X n , V n +1 ), ou ( V n ) n Z est une suite devariablesaleatoiresindependantesetdemˆemeloitellepourtout n Z , V n +1 est independante de la suite (( X k , V k )) k  n . L’objet de l’article est de donner une condition necessaire et susan te pour que les « innovations » ( V n ) n Z determinent completementlasuite( X n ) n Z etdedecrirelinformationmanquantedanslecas contraire. Classi c ation math. : 60J05. Mots-cles :chaˆnesdeMarkovconstructives,chaˆnesdeMarkovindexeespar Z , ltrations.
Introduction Dans cet article, nous nous etudions la ltration d’une chaˆne de Markov constructive indexeepar Z .NousappelonschaˆnedeMarkovconstructive(homogene)unesuite ( X n ) n Z devariablesaleatoiresavaleursdansunespacedetats( E, E )gouverneepar unerelationderecurrencedelaforme X n +1 = f ( X n , V n +1 ), ou ( V n ) n Z est une suite de variablesaleatoiresindependantesetdemˆemeloiavaleursdansunespace( G, G ), f est une application mesurable de ( E  G, E  G ) dans ( E, E ) et V n +1 estindependantedela suite (( X k , V k )) k  n pour tout n Z .Nousappelonsinnovationslesvariablesaleatoires V n quifournissentlinformationnouvelle(independantedupasse)achaqueinstant.Sous ces conditions, la suite ( X n ) n Z estunechaˆnedeMarkovdansla ltrationnaturellede (( X n , V n )) n Z , de noyau de transition  ou ( x,  ) est la loi de f ( x, V 1 ). Les chaˆnes de Markov constructives fournissent beaucoup d’exemples de chaˆnes de Markovetapparaissentnaturellementensimulation.Ladonneedunevariablealeatoire X 0 et d’une suite ( V n ) n  1 devariablesiid,independantede X 0 permet a construire la suite ( X n ) n Z veri antlarelationderecurrence X n +1 = f ( X n , V n +1 ). En revanche, pour leschaˆnesdeMarkovindexeespar Z , on ne dispose pas de condition « initiale » , et engenerallaconnaissancede X 0 et de la suite ( V n ) n Z ne permet pas de construire la suite ( X n ) n Z . Pour tout entier N (aussi proche de soit-il), la connaissance de ( X n ) n N et de  la suite ( V n ) n Z determinecompletementlasuite( X n ) n Z parlarelationderecurrence X n +1 = f ( X n , V n +1 ). En notant ( F nY ) n Z la ltrationnaturelle(completee)dunesuite 1