Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

.Graphic2suringMer!y^fCormisulaeKf)or12niteGrtype2in(vCariantstoofij3uperber-manifMoldsisChr4istine24Lescop23CNRS[,toInstitut(FFourMier6,:GrenobtoleofCIRM,mJ.unec2007Thurmath.GT/07033471,GrCaphic+surgerivialyoff3or13m!ulae!Setting^MfisHaisQH-sphere;(closed,Z3-dimens)ional2suchZthatZHalgebrolds()M2;linkingQintersections)associated=diaHsurgerp(!S23v;G.QD)))in122=M(.16Theorem241non(G.reeKaruperbe.r3g=,!D!.!Thur!ston)138^!!closed342-fsurgerormm]on(CM2oincar?(4M()M=C())M2n(1=);2Cn)diagonal4such!that48!Jintersectionst2Kij:(SM1,tMSmixture1umbers!trMMinducingerJsomeivKr:GrSf1=S(1)!TheoremC(M.2ontse(iMh,)K,g,Z.Jston8Kas!Theorem=lk(()JZ;4KM)2canonically!x1ed!ona@trCdeg22(vMiant)M,!antisymmetr2ic1,1!Casson-W^alk2er^(2M^)34==21212!Z^C142!(^M24)!!math.GT/07033473aphic:ymath.GT/0703347orGrulaeaphic!surger2y2fCor(m))ulaePWithdualfFi2;4jCg()f@12;M2.;X3;24Mg!,hassociate4pXiji:2CM4:(CM())=and(CM(n)1are)aic4ofncodimensionallmanifdiagonalsF!inC42M(M4)Thus(x(1);axof2n;associatedxedges3iple;inxassociated4v)tices7!to(combinationxtrialent;gxamsjmath.GT/0703347)aphicandysetor!ulaeijF:or;anLy:n),gthereare3(deg1ree()n\)iiniv1ar24iantsKthatiaresimilar;combinationsIofXsuchcongur:ationMspaceXinteg(r2als4ov2er143Cf2boundn((M0)4associated,toItr1iv1alent2v(ertices2with`2fn,v;erItices;,]and=thatidistinguish)Zwhere-spheres(that2are145notdistinguishedLbSythGreLetin3variniantsjof.deg(reeKlessjthan2nor.3math.GT/0703347MGriaphicXsurger;yf4or0m1ulae()Notation4(surg(er)y)\LetK4bedaGrknot:in6MI.KM=(iKTheorem;fp;:::;=1q)I=6M1n0Int((T1(6K3)))[X@6T(K465)3(6pm=(K)+236q:`surger(mK1)),KS11,suchD\2;=S14If1K:=))@ik,1F34.(M2(4KI;Kp==iqTheorem))f=;Fg4]((M=)iqi22p`(where33+2+)+())in(Clk23(M;)1\C2=(`M:(surgerKm;:p;=gqM))=up(toiminor1correctionsq.)2lk:M1(IK1;2p6=(q))I(2UM;)V )Y==lkqM!(@U;LV+)()qAp1lk5M2(LK=;16U)SlkM123(K;263V)and:14math.GT/07033475Gr(aphic)surger1yXf2or6mulaeF251ori2456fmath.GT/07033471aphic;y:or:ulae:K;,62gK,,let4i,be2asurf,ace4withMboundathatriyKa=kwhenn6otj@AssumeijkiL==KKi;,:such;that4=i8f\;K;jg=f;;if;i;6g=FjI.fSet;;ijk;(gLM==((Ki11;q:):2::;2KI61))2=3h4(i);I2jM;) kYi=Mq.!F@or`+2()SA6`,14=ijk24=Slk(i1)\(2j;)3(\k)4.Letq(1),.(.).,(q)62(Z)nandf()0`g+.cF:ormath.GT/0703347Iaphicyfor1ulae;`terdn3tsuki,4(2is1iants==1;16isXe(that2)Sor42lk)M()1r)ree\ulaxplicitlyf(H2or)aphic;(Le.](M32)3\())2(qv42)yAn2iantandar`aphiccthe4E.133of2S=v4M16aphicXvmath.GT/07033472ySulae4Murakami,lkoufalidis)(M12\2)2(;((2=\(3=)2lk=00()3(\K4mined;Ale(Garouf4deg\va1polynomial)andmath.GT/0703347gGroraphicosurgerterymath.GT/070334fuclairorxpressedmKulaeaTheoremsJones1Kand)2ofgeneriantsaliz(e;tomath.GT/0703347anyyulaedegarree.nGrinsurgervfarmiantTheorem(with,3OhnGarand.2.ncomponent(links1,Mrespectiv)ely).The(y1gener+aliz2eMf)or)p2=Sq)-surger0ies)on2nMull-homologoKus1knotsqinQ(-spheres).qFor2ZK-spheres+,3togetherKwith.other00results(of)math.GT/0703347deter,bthetheyxandegenerpolynomialalizalidis-Habegger).eyGaroufreealidis-Goussaroinv-Parolyhasakdegcomparnisonvofiation,ltranationsxplicitofrthefvmectorfspacergenerleadingatedmbiny7.ZA-spherese.eQuestionsvStudy(ltr)ationsisofcoefcientthethespacepolynomialoforQ-spheres3.inFindmstopologicalinsurgeraryoff1or^mnulaeQf.orGrallsurgercongurfationmspacein

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin