7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois
` PROBLEMES INVERSES POUR L’ENVIRONNEMENT
15
5.ontres:coptiˆolee´atam,liotnatjdM´hoetvsedairanoitllen Nousallons´etudierdanscettepartiele4D-VAR,quiestuneg´ene´ralisationdu 3D-VARpourdesobservationsdistribue´esdansletemps.Ontientdonccompte de´sormaisdunmod`eled´evolution(dansletemps)quipermettradecomparer l´etatdusyste`meaveclesobservationsa`linstantappropri´e. Lafenˆetredassimilationestunintervalledetempsdonne´,lanalyseestre´alis´ee`a linstantinitial,etonsupposelesobservationsdistribu´eessurminstants (ti)0im dans l’intervalle. On noteray(ti) les observations,x(time,ettate´l)e`tsysudxt(ti) l´etatvraidusyste`me,a`linstantti. La matrice de covariance des erreurs d’obser-vations`alinstanttitontsee´eRie´totera´eopL.vrtaoicnrudboesdantestnorrespon Hiot´eursneehcuabe´ojuottsedceanridurreerocraertnP.decevacoam,lriatB, carellenestde´niequa`linstantinitial,le´bauchexboianrpoiir´etantuneestimat delanalyse,donca`linstantinitial. 5.1.4D-VAR : assimilation variationnelle en dimension 4.Dans sa formu-lationge´n´erale,leprincipedu4D-VARestdeconsid´ererlaminimisationdela fonctioncoˆutsuivante: m X T1T1 (12)J(x() = t)))R( (x(t))). 0(x0xb)B(x0xb() + yiHi(xi iyiHi i i=0 Laminimisationdecettefonctioncoˆutestre´alise´esouscontrainte.Ilsagitdune contraintefortedemod`ele,puisquel´ecrituredeJ(xd´)leesdvadsenuerpx(ti), qui elles-meˆmesde´pendentdelaconditioninitialex0. D’un point de vuecontinusoppustuepno,noilotu´veuqdeanimledyod`eelemerqu se´critdelafac¸onsuivante: dx (13) =F(x), x(0) =x0. dt Maisonpeut´egalemente´crireleprobl`emedefa¸concs`ridtee, en supposant que la suitedes´etatsdumod`elex(tianivsuon¸cfaladerctise´):et (14)x(t) =M(x), i0ti0 o`uM0tir´laoleseld`oue(temrtnattnavep)eearetruomtslpoe´ssreedapnitsedlant initial`alinstantti. Le4D-VARestdoncunprobl`emecomplique´deminimisationnonline´airesous contrainte.Onpeutlesimplier`alaidedesdeuxhypothe`sessuivantes: ausaC:eil´tledeom`delod`elessuitedemmmocenuece´erirnpiotseuev´utol interm´ediaires,permettantdepasserduninstantausuivant.Onpeutsupposer queM0e),etsilidesttsna0ta`ul-iˆmmedentsspadeerinlitne(e´tmrepatte on noteMi`dlepereemttnadtlar´esolvantedumotnaseprdseieltansti1a` ti, alorsxi=Mixi1e´ucaprrec,rrnedonc,et xi=MiMi1. . . M1x0. ixorppAilnoitamnaegtn:e´naeriteoncoˆutplafonctia-dneruqeuˆtueerte dratiqueensupposant,enplusdelaline´arisationdesope´rateursdobservation Hieoldqeumle,`eMeupettˆilerae´n´sirnO.epourraalorsremplcareelom`dlee parsonapproximationline´airetangente(ousad´eriv´ee),etMsera alors le mode`leline´airetangent.Ilsagitdumeˆmeproce´d´equepourlesop´erateurs d’observationH´erag´enntlemeestrpiharcoi(v.)eCnest´cderpe´eesth`esypottteh validesilap´eriodedassimilationnestpastroplongue.