Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

April WSPC Proceedings Trim Size: 9in x 6in qmath10

De
20 pages
Niveau: Supérieur, Doctorat, Bac+8
April 18, 2008 16:58 WSPC - Proceedings Trim Size: 9in x 6in qmath10 1 Repeated Interaction Quantum Systems: Deterministic and Random Alain Joye Institut Fourier Universite de Grenoble BP 74 38402 Saint Martin d'Heres, France This paper gives an overview of recent results concerning the long time dy- namics of repeated interaction quantum systems in a deterministic and ran- dom framework. We describe the non equilibrium steady states (NESS) such systems display and we present, as a macroscopic consequence, a second law of thermodynamics these NESS give rise to. We also explain in some details the analysis of products of certain random matrices underlying this dynamical problem. Keywords: Non equilibrium quantum statistical mechanics, Repeated interac- tion quantum systems, Products of random matrices 1. Introduction and Model A repeated interaction quantum system consists of a reference quantum subsystem S which interacts successively with the elements Em of a chain C = E1+E2+· · · of independent quantum systems. At each moment in time, S interacts precisely with one Em (m increases as time does), while the other elements in the chain evolve freely according to their intrinsic dynamics. The complete evolution is described by the intrinsic dynamics of S and of all the Em, plus an interaction between S and Em, for each m. The latter is characterized by an interaction time ?m > 0, and an interaction operator Vm (acting on S and Em); during the time interval [?1+· · ·+?m?1, ?1+· · ·

  • constant interaction

  • large-time asymptotics

  • interaction quantum

  • dynamics

  • ideal repeated

  • any master

  • interaction operators


Voir plus Voir moins
April18,200816:58WSPC-ProceedingsTrimSize:9inx6inqmath10RepeatedInteractionQuantumSystems:DeterministicandRandomAlainJoyeInstitutFourierUniversite´deGrenoble47PB38402SaintMartind’He`res,FranceThispapergivesanoverviewofrecentresultsconcerningthelongtimedy-namicsofrepeatedinteractionquantumsystemsinadeterministicandran-domframework.Wedescribethenonequilibriumsteadystates(NESS)suchsystemsdisplayandwepresent,asamacroscopicconsequence,asecondlawofthermodynamicstheseNESSgiveriseto.Wealsoexplaininsomedetailstheanalysisofproductsofcertainrandommatricesunderlyingthisdynamicalproblem.Keywords:Nonequilibriumquantumstatisticalmechanics,Repeatedinterac-tionquantumsystems,Productsofrandommatrices11.IntroductionandModelArepeatedinteractionquantumsystemconsistsofareferencequantumsubsystemSwhichinteractssuccessivelywiththeelementsEmofachainC=E1+E2+∙∙∙ofindependentquantumsystems.Ateachmomentintime,SinteractspreciselywithoneEm(mincreasesastimedoes),whiletheotherelementsinthechainevolvefreelyaccordingtotheirintrinsicdynamics.ThecompleteevolutionisdescribedbytheintrinsicdynamicsofSandofalltheEm,plusaninteractionbetweenSandEm,foreachm.Thelatterischaracterizedbyaninteractiontimeτm>0,andaninteractionoperatorVm(actingonSandEm);duringthetimeinterval[τ1+∙∙∙+τm11+∙∙∙+τm),SiscoupledtoEmonlyviaVm.Systemswiththisstructureareimportantfromaphysicalpointofview,sincetheyarisenaturallyasmodelsforfunda-mentalexperimentsontheinteractionofmatterwithquantizedradiation.Asanexample,the“Oneatommaser”providesanexperimentalsetupinwhichthesystemSrepresentsamodeoftheelectromagneticfield,whereastheelementsEkdescribeatomsinjectedinthecavity,onebyone,which
April18,200816:58WSPC-ProceedingsTrimSize:9inx6inqmath102interactwiththefieldduringtheirflightinthecavity.Aftertheyleavethecavity,theatomsencodesomepropertiesofthefieldwhichcanbemea-suredontheseatoms14,16Forrepeatedinteractionsystemsconsideredasideal,i.e.suchthatallatomsareidenticalwithidenticalinteractionsandtimesofflightthroughthecavity,correspondingmathematicalanalysesareprovidedin17,7Totakeintoaccounttheunavoidablefluctuationsintheexperimentsetupusedtostudytheserepeatedinteractionsystems,mod-elizationsincorporatingrandomnesshavebeenproposedandstudiedin8and.9Withadifferentperspective,repeatedquantuminteractionmodelsalsoappearnaturallyinthemathematicalstudyofmodelizationofopenquantumsystemsbymeansofquantumnoises,see4andreferencestherein.Any(continuous)masterequationgoverningthedynamicsofstatesonasystemScanbeviewedastheprojectionofaunitaryevolutiondrivingthesystemSandafieldofquantumnoisesininteraction.Itisshownin4howtorecoversuchcontinuousmodelsassomedelicatelimitofadiscretizationgivenbyarepeatedquantuminteractionmodel.Letusfinallymention15forresultsofasimilarflavourinasomewhatdifferentframework.Ourgoalistopresenttheresultsofthepapers7,8and9on(random)repeatedinteractionquantumsystems,whichfocusonthelongtimebe-haviourofthesesystems.Letusdescribethemathematicalframeworkusedtodescribethesequantumdynamicalsystems.Accordingtothefundamentalprinciplesofquantummechanics,statesofthesystemsSandEmaregivenbynormal-izedvectors(ordensitymatrices)onHilbertspacesHSandHEm,respec-tively,3,6a.WeassumethatdimHS<,whiledimHEmmaybeinfinite.ObservablesASandAEmofthesystemsSandEmareboundedopera-torsformingvonNeumannalgebrasMS⊂B(HS)andMEm⊂B(HEm).TheyevolveaccordingtotheHeisenbergdynamicsR3t7→αtS(AS)andtttR3t7→αEm(AEm),whereαSandαEmare-automorphismgroupsofMSandMEm,respectively,seee.g.6Wenowintroducedistinguishedreferencestates,givenbyvectorsψS∈HSandψEm∈HEm.TypicalchoicesforψS,ψEmareequilibrium(KMS)statesforthedynamicsαtS,αtEm,atinversetemperaturesβS,βEm.TheHilbertspaceofstatesofthetotalsystemisthetensorproductH=HS⊗HC,aAnormalizedvectorψdefinesa“pure”stateA7→hψ,Aψi=TrP(%ψA),where%ψ=|ψihψ|.Ageneral“mixed”stateisgivenbyadensitymatrix%=n1pn%ψn,wheretheprobabilitiespn0sumuptoone,andwheretheψnarenormalizedvectors.
Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin