Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

version du septembre

De
15 pages
Approximations diophantiennes Pierre Jammes (version du 10 septembre 2009) 1. Fractions continues 1.1. Généralités 1.1. Étant donnée une suite (an), on pose [a0, a1, . . . , an] = a0 + 1 a1 + 1 a2 + 1 . . . + 1 an = cn 1.2. Les réduites cn = pn qn sont déterminées par les relations de récurrence { pn = anpn?1 + pn?2 qn = anqn?1 + qn?2 avec { p?1 = 1 p0 = a0 q?1 = 0 q0 = 1 1.3. pn+1qn ? pnqn+1 = (?1)n pnqn?2 ? pn?2qn = (?1)nan cn+1 ? cn = (?1)n qn+1qn cn ? cn?2 = (?1)nan qn?2qn 1.4. pn pn?1 = [an, an?1, . . . , a0] qn qn?1 = [an, an?1, . . . , a1] 1.2. Développement d'un irrationnel On considère maintenant un irrationnel ? et on note [a0, a1, a2, . . .] sont développe- ment en fraction continue simple, c'est-à-dire que ai ? N? pour tout i. 1

  • irrationalité

  • ?n?1 ln

  • ln qn

  • qn qn?1

  • brjuno ?

  • irrationnel ?

  • qn?? pn


Voir plus Voir moins

byStéphane ATTAL
o
Prépublicationdel’InstitutFouriern 495(2000)
Abstract. — We show how the toy Fock space can be embedded into the usual
Fockspaceofquantumstochasticcalculus. Thisembeddinggivesrisetoarigorous discrete
approximationoftheFockspaceanditsnaturalnoiseoperators. WerecoverthequantumIto
tablefromthediscreteone. WefinallyshowthatthequantumBrownianmotionandPoisson
processcanbesimultaneouslyapproachedbyquantumBernoullirandomwalks.
I. ThetoyFockspace.
LetusrealiseaBernoullirandomwalkonitscanonicalspace. LetΩ 0,1 and
betheσ-fieldgeneratedbyfinitecylinders. Onedenotesbyν thecoordinatemapping:n
ν ω ω ,foralln .n n
Let p 0,1 and q 1 p. Letμ be the probability measure on Ω, whichp
makes the sequence ν to be a sequence of independent, identically distributedn n
Bernoulli random variables with law pδ qδ . Let denote the expectation with1 0 p
2respecttoμ . Wehave ν ν p. Thustherandomvariablesp p n p n
ν pn
X ,n
pq
satisfythefollowing:
i) theX areindependent,n
ii) X takesthevalue q/pwithprobabilityp and p/q withprobabilityq,n
2iii) X 0and X 1.p n p n
2Let Φ bethespaceL Ω, ,μ . Wedefineparticularelementsof Φ byp p p
X , inthesenseX ω 1forallω Ω
X X X ifA i ,...,i isanyfinitesubsetof .A i i 1 n1 n
Keywords: Fockspaces;creation,annihilationandconservationprocesses;Bernoullirandomwalks.
Math. classification: 81S25.
1

<
0

)
.
4
3

"

-






=
)
)

<
3
0
3


;

)



8
3
8
7
8
5
:
!

7

4

0

)


)

*


6


)
7
$
2

%

&



+


2

,
"
3
'
7



/
*
2
#
.
)


/
(
.
4
)
$
2
9
1
/


/

.


1

-

+

,
9
.







-





)

2
8





9
3



$

:

7

)

2
#
/
)Let denote the set of finite subsets of . From i) and iii) above it is clearf
X ; A isanorthonormalsetofvectorsof Φ .A f p
Proposition1. — Thefamily X ; A isanorthonormalbasisof Φ .A f p
Proof. — We just have to prove that X , A forms a total set in Φ . InA f p
thesamewayasfortheX ,defineA
ν
ν ν ν for A i ,...,i .A i i 1 n1 n
Itissufficienttoprovethattheset ν ; A istotal.A f
Thespace Ω, ,μ canbeidentifiedto 0,1 , 0,1 ,μ˜ forsomeprobabilityp p
measureμ˜ ,viathebase2decompositionofrealnumbers. Notethatp
1 if ω 1n
ν ω ωn n
0 if ω 0n
thusν ω . Consequentlyν ω . Nowlet f Φ besuchn ω 1 A ω 1 ω 1 pn i in1
n nthat f ,ν 0 for all A . Let I k2 , k 1 2 be a dyadic interval withA f
n nk < 2 . Thebase2decompositionofk2 isoftheform α ,...,α ,0,0,... . Thus1 n
f ω dμ˜ ω f ω dμ˜ ω .ω α ω αp n n p1 1
I 0,1
The function canbeclearly writtenasalinearcombination oftheν .ω α ω α A1 1 n n
Thus f dμ˜ 0.Theintegraloff vanishesoneverydyadicinterval,thusonallintervals.pI
Itisnoweasytoconcludethat f 0.
Wehaveprovedthateveryelement f Φ admitsauniquedecompositionp
f f A X 1A
A f
with
2 2f f A < . 2
A f
We can now define the toy Fock space. The toy Fock space is the separable Hilbert space
Φ whose orthonormal basis is chosen to be indexed by . Let X ; A bef A f
thisbasis. Asaconsequencethereisanaturalisomorphism between Φand Φ . Foreachp
p 0,1 ,thespace Φ iscalledthep-probabilisticinterpretationof Φ.p
Theonlypropertythatallowstomakeadifferencebetween Φand Φ ,orbetweenp
2different Φ ’s,istheproduct. Indeed,as Φ isaL spaceitadmitsanaturalproduct. Thep p
waywe havechosenthe basisof Φ makesthe productbeingdeterminedbythe value ofp
2X ,n .n
2
/

.
5


/
1
)

:

)
.
1
1

<
,
+

=


:


)
.

/
:

*
0

-
)
.
/
1
)
/
.

/
.
8

)
/
3
.
2
)
0
)
.
;
1
)
0
)
/
/
0
:

.
.
=
:

5
/
,

=
2
.
3
)
8
*
/
8
1
8

=
/
.
=

8
.

1
8
/
=

/
:
.
2
/
3
=
8
0
8
:
8



0
1

/
:
:
:
:

.
=
:
/



.
.
)
/

:
0
0
.
1
1
+

)

;
)

/

/

.
.
)
/

8

8
.
8
/
*
6

.

:
0
/
0

.
:Proposition2. — In Φ wehavep
2X 1 c Xp nn
q pwherec .p pq
Proof.
1 12 2 2 2X ν p 2pν p 1 2p νn nn npq pq
21 p qp q p2p q p ν 1 νn n
pq qp qp
pc c ν pp p n
1 ν 1 c .n p
pq pq pq
The product that the p-probabilistic interpretation Φ determines in Φ is calledp
p-product.
On Φ,onedefinesthecreation,annihilationandconservationoperatorsby
a X XA A n n/An
a X XA A n n An
a X X .A A n An
Notethata ,a ,a arecompletelydeterminedbyn n n
i) theirvalueon andX ,n
ii) thefacttheyacttrivialyonX ,m n.m
Whatwemeanexactlyisthefollowing. IfH denotestheclosedsubspacegeneratedbyn
andX ,thenthereexistsanaturalisomorphismbetween Φand H (wherethecount-n n
n
able tensor product is understood to be associated to the stabilizing sequence un n
suchthatu foralln)givenbyn
X X X if A i ,...,i .A i i 1 n1 2
The definitions of a , a , a show that these operators act only on H and act as thenn n n
ηεidentity everywhere else. In particular a commutes with a for all n m and allmn
ηεε, η , ,0 . The compositions a a are given by the following discrete quantum Itonn
table.
ηεProposition3. — Theproductsa a aregivenbynn
η
an
ε a a an n nan
a 0 a 0n n
a I a 0 an n n
a a 0 a .n n n
3
)
:



4
8
+

6
)
4

)
)
4
6

)
=
6

/

:

:


:
9
)
4
/
6


)
8
9

6
.
9


=
=
8
5
=

5
)

=
8
5


6

6

=
.

4
)
)
=
6

=

8
)
8


5

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin