COMPUTER THEOREM PROVING IN MATH
31 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

COMPUTER THEOREM PROVING IN MATH

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
31 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
COMPUTER THEOREM PROVING IN MATH CARLOS SIMPSON Abstract. We give an overview of issues surrounding computer- verified theorem proving in the standard pure-mathematical con- text. 1. Introduction When I was taking Wilfried Schmid's class on variations of Hodge structure, he came in one day and said “ok, today we're going to calcu- late the sign of the curvature of the classifying space in the horizontal directions”. This is of course the key point in the whole theory: the negative curvature in these directions leads to all sorts of important things such as the distance decreasing property. So Wilfried started out the calculation, and when he came to the end of the first double-blackboard, he took the answer at the bottom right and recopied it at the upper left, then stood back and said “lets verify what's written down before we erase it”. Verification made (and eventually, sign changed) he erased the board and started in anew. Four or five double blackboards later, we got to the answer. It was negative. Proof is the fundamental concept underlying mathematical research. In the exploratory mode, it is the main tool by which we percieve the mathematical world as it really is rather than as we would like it to be. Inventively, proof is used for validation of ideas: one uses them to prove something nontrivial, which is valid only if the proof is correct.

  • full understanding

  • reasoning might

  • standard mathematical

  • many theories

  • theorem proving

  • too many

  • many

  • machine verify

  • standard pure

  • full- fledged machine-verification system


Sujets

Informations

Publié par
Nombre de lectures 25
Langue English

Extrait

COMPUTERTHEOREMPROVINGINMATHCARLOSSIMPSONAbstract.Wegiveanoverviewofissuessurroundingcomputer-verifiedtheoremprovinginthestandardpure-mathematicalcon-.txet1.IntroductionWhenIwastakingWilfriedSchmid’sclassonvariationsofHodgestructure,hecameinonedayandsaid“ok,todaywe’regoingtocalcu-latethesignofthecurvatureoftheclassifyingspaceinthehorizontaldirections”.Thisisofcoursethekeypointinthewholetheory:thenegativecurvatureinthesedirectionsleadstoallsortsofimportantthingssuchasthedistancedecreasingproperty.SoWilfriedstartedoutthecalculation,andwhenhecametotheendofthefirstdouble-blackboard,hetooktheansweratthebottomrightandrecopieditattheupperleft,thenstoodbackandsaid“letsverifywhat’swrittendownbeforeweeraseit”.Verificationmade(andeventually,signchanged)heerasedtheboardandstartedinanew.Fourorfivedoubleblackboardslater,wegottotheanswer.Itwasnegative.Proofisthefundamentalconceptunderlyingmathematicalresearch.Intheexploratorymode,itisthemaintoolbywhichwepercievethemathematicalworldasitreallyisratherthanaswewouldlikeittobe.Inventively,proofisusedforvalidationofideas:oneusesthemtoprovesomethingnontrivial,whichisvalidonlyiftheproofiscorrect.Othermethodsofvalidationexist,forexampleshowingthatanidealeadstocomputationalpredictions—buttheyoftengenerateproofobligationstoo.Unfortunately,theneedtoprovethingsisthefactorwhichslowsusdownthemosttoo.Ithasrecentlybecomepossible,andalsonecessary,toimagineafull-fledgedmachine-verificationsystemformathematicalproof.Thismightradicallychangemanyaspectsofmathematicalresearch—forKeywordsandphrases.Lambdacalculus,Typetheory,Theoremproving,Veri-fication,Settheory.1
2C.SIMPSONbetterorforworseisamatterofopinion.Atsuchajunctureitiscrucialthatstandardpuremathematiciansparticipate.Thepresentpaperisintendedtosupplyasyntheticcontributiontothesubject.Most,orprobablyall,isnotanythingnew(andItakethisopportunitytoapologizeinadvanceforanyadditionalreferenceswhichshouldbeincluded).Whatissupposedtobeusefulistheprocessofidentifyingacertaincollectionofproblems,andsomesuggestionsforsolutions,withacertainphilosophyinmind.Thediversecollectionofworkersinthisfieldprovidesadiversecollectionofphilosophicalperspectives,drivingourperceptionofproblemsaswellasthechoiceofsolutions.Thusitseemslikeavalidandusefultasktosetouthowthingslookfromagivenphilosophicalpointofview.Ourperspectivecanbesummedupbysayingthatwewouldliketoformalize,asquicklyandeasilyaspossible,thelargestamountofstandardmathematics,withtheultimategoalofgettingtoapointwhereitisconcievabletoformalizecurrentresearchmathematicsinanyofthestandardfields.Thisisagoodmomenttopointoutthatoneshouldnotwishthateverybodysharethesamepointofview,orevenanythingclose.Onthecontrary,itisgoodtohavethewidestpossiblevarietyofquestionsandanswers,andthisisonlyobtainedbystartingwiththewidestpossiblevarietyofphilosophies.Wecannowdiscussthedifferencebetweenwhatwemightcall“stan-dard”mathematicalpractice,andothercurrentswhichmightbedi-verselylabelled“intuitionist”,“constructivist”or“non-standard”.Inthestandardpractice,mathematiciansfeelfreetousewhateversystemofaxiomstheyhappentohavelearnedabout,andwhichtheythinkiscurrentlynotknowntobecontradictory.Thiscaneveninvolvemix-ingandmatchingfromamongseveralaxiomsystems,oremployingreasoningwhoseaxiomaticbasisisnotfullyclearbutwhichthemath-ematicianfeelscouldbefitintooneoranotheraxiomaticsystemifnecessary.Thispracticemustbeviewedinlightoftheroleofproofasvalidationofideas:forthestandardmathematiciantheideasinques-tionhavelittle,ifanything,todowithlogicalfoundations,andthemathematicianseeksproofresultsforvalidation—itisclearthatanygenerallyacceptedframeworkwillbeadequateforthistask.Agrowingnumberofpeopleareinterestedindoingmathematicswithinanintuitionistorconstructiveframework.Theytendtobeclosesttomathematicallogicandcomputerprogramming,whichmaybewhymanycurrentcomputer-provingtoolsaretosomedegreeexplic-itlydesignedwiththeseconcernsinmind.Therearemanymotivationsforthis,theprincipalonebeingdeeplyphilosophical.Anotherisjustconcernaboutconsistency—youneverknowifsomebodymightcome
THEOREMPROVING3upwithaninconsistencyinanygivenaxiomaticsystem(see[40]forexample).Commonsensesuggeststhatifyoutakeasystemwithlessaxioms,thereislesschanceofit,soitispossibletofeel“safer”doingmathematicswithnottoomanyaxioms.Asubtlermotivationisthequestionofknowingwhatistheminimalaxiomaticsystemunderwhichagivenresultcanbeproven,see[72]forexample.Computer-scientistshavesomewonderfultoyswhichmakeitpossibledirectlytotransformaconstructiveproofintoacomputationalalgorithm.Theproblemofcomputer-verified-proofinthestandardframeworkisadistinctmajorgoal.Ofcourse,ifyouprovesomethinginaconstruc-tiveframework,youhavealsoprovenitinthestandardframeworkbuttheoppositeisnotthecase.Integratingadditionalaxiomssuchasre-placementorchoiceintothetheory,givesrisetoadistinctoptimizationproblem:itisofteneasiertoproveagiventhingusingtheadditionalaxioms,whichmeansthatthestructureofthetheorymaybediffer-ent.Thenotionofcomputerverificationhasalreadymadeimportantcontributionsinmanyareasoutsideof“standard”mathematics,anditseemsreasonabletothinkthatitshouldalsoprovideanimportanttoolinthestandardworld.Onecouldalsonotethat,whenyougetdowntothenitty-grittydetails,mosttechnicalresultsconcerninglambdacalculus,includingsemantics,normalizationandconsistencyresultsforvarious(highlyin-tuitionistic)axiomaticsystems,arethemselvesproveninastandardmathematicalframeworkrelyingonZermelo-Frankelsettheory(see[78]forexample).Thusevenpeoplewhoareinterestedintheintu-itionistorconstructivesideofthingsmightfinditusefultohavegoodstandardtoolsattheirdisposal.Onereasonwhycomputertheoremverificationinthestandardpuremathematicalcontextisnotrecievingenoughattentionisthatmostpuremathematiciansareunawareofthesubject.Thislackofawareness—whichIsharedafewyearsago—istrulycolossal,giventheliterallythousandsofpapersconcerningthesubjectwhichhaveappearedinre-centyears.Thusitseemsabitsilly,butoneofthegoalsofthepresentpaperistotrytospreadthenews.ThisongoingworkisbeingdonewithanumberofotherresearchersatNice:A.Hirschowitz,M.Maggesi,L.Chicli,L.Pottier.Iwouldliketothankthemformanystimulatinginteractions.Manythankstotherefereewhopointedoutanumberofreferences,andstruggledtoimprovemyfaultyunderstandingofthehistoryofthesubject.Severalreadersofthefirstversionsenthelpfulremarksandreferences.IwouldliketothankC.Raffalli,creatorofthePhoXsystem,whoexplainedsomeofitsideasduringhisvisittoNicelastsummer—thesehave
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents