Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le procédé de combustion in situ
159 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le procédé de combustion in situ

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
159 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
THÈSE En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par Institut National Polytechnique de Toulouse Discipline ou spécialité : Dynamique des Fluides JURY Arian Kamp, Ingénieur de Recherche, CHLOE, (membre) Bernard Corre, Ingénieur de Recherche, Total S.A., (membre) Gerald Debenest, Maître de Conférences, IMFT, (co-directeur) Gérard Renard, Ingénieur de Recherche, IFP, (membre) Henri Bertin, Directeur de Recherche CNRS, TREFLE-ENSAM, (rapporteur) Hans Bruining, Professeur des Universités, Delft University, (rapporteur) Michel Quintard, Directeur de Recherche CNRS, IMFT, (directeur) Syilvian Salvador, Professeur, EMAC, (membre) Ecole doctorale : Mécanique, Energétique, Génie civil, Procédés Unité de recherche : Institut de Mécanique des Fluides de Toulouse Directeur(s) de Thèse : Michel Quintard Présentée et soutenue par Hossein Fadaei Le 04/12/2009 Titre : Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le procédé de combustion in situ

  • oil saturation

  • oxygen mole

  • simulation model

  • diffusion coefficient

  • typical oxygen

  • fractured core

  • coke zone

  • heterogeneous porous

  • model based

  • gas combustion


Sujets

Informations

Publié par
Nombre de lectures 73
Langue English
Poids de l'ouvrage 5 Mo

Extrait














THÈSE


En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par Institut National Polytechnique de Toulouse
Discipline ou spécialité : Dynamique des Fluides


Présentée et soutenue par Hossein Fadaei
Le 04/12/2009

Titre : Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le
procédé de combustion in situ

JURY
Arian Kamp, Ingénieur de Recherche, CHLOE, (membre)
Bernard Corre, Ingénieur de Recherche, Total S.A., (membre)
Gerald Debenest, Maître de Conférences, IMFT, (co-directeur)
Gérard Renard, Ingénieur de Recherche, IFP, (membre)
Henri Bertin, Directeur de Recherche CNRS, TREFLE-ENSAM, (rapporteur)
Hans Bruining, Professeur des Universités, Delft University, (rapporteur)
Michel Quintard, Directeur de Recherche CNRS, IMFT, (directeur)
Syilvian Salvador, Professeur, EMAC, (membre)


Ecole doctorale : Mécanique, Energétique, Génie civil, Procédés
Unité de recherche : Institut de Mécanique des Fluides de Toulouse
Directeur(s) de Thèse : Michel Quintard



Acknowledgements

I would like to thank my advisers, Prof. Michel Quintard, Dr. Gerald Debenest and Dr. Arjan
Kamp for their help during this work.
Special thank to Total S.A. for sponsoring my PhD study in France also for providing
financial support of the experimental part of the thesis done at Stanford University.
I would also like to thank Dr. Louis Castanier and Dr. Anthony Kovscek of Stanford
University for their valuable contributions to the experimental study.








































i Table of contents

Table of contents

Abstract vi
Résume des chapitres en français vii
CHAPTER 1. INTRODUCTION 1
1.1 Methodology 2
1.1.1 Small scale challenges and the feasibility of the ISC 2
1.1.2 Large scale challenges, the upscaling method 4
1.1.3 Presenting the chapters 6
CHAPTER 2. COMBUSTION IN HETEROGENEOUS POROUS MEDIA 9
2.1 Combustion processes in homogeneous porous media 9
2.1.1 Typical observations of combustion in a homogeneous porous medium 9
2.2 In situ combustion (ISC) in an oil reservoir 11
2.2.1 Types of in situ combustion processes 12
2.2.2 Chemical changes of crude oil due to temperature increase 13
2.2.3 Advantages of the ISC 16
2.2.4 Disadvantages of the ISC 16
2.2.5 Physical changes of crud oil due to temperature increase 17
2.2.6 How the ISC process works? 19
2.3 In situ combustion in fractured reservoirs 23
2.3.1 Laboratory works and simulation 23
2.3.2 Pilot or field test results 26
2.3.3 Summary 26
2.4 Fractured reservoirs modeling challenges 26
2.4.1 Hierarchical length scale in a typical fractured reservoir 27
2.4.2 Idealized representation of the fractured reservoir 29
2.4.3 Simplified geometry 30
2.4.4 Fluid flow modeling in fractured reservoirs 30
2.4.5 Two-equation models 35
2.4.6 Summary 39
CHAPTER 3. NUMERICAL STUDY OF THE PROPAGATION OF A
COMBUSTION FRONT IN A FRACTURED SYSTEM 43
3.1 Validation of the simulator 43
3.1.1 Mathematical model of the combustion process in porous media 43
3.1.2 Validation case: One and two dimensional diffusion tests 45
3.1.3 Validation case: One dimensional solid-gas combustion test 47
3.1.4 Crude oil combustion in a non-fractured core 49
3.1.5 Comparison of simulation results with Kumar’s experiment 51
3.1.6 Summary 54
3.2 Simulation of oil combustion in a fractured core 54
3.2.1 Simulation model 54
3.2.2 Typical combustion of crude oil in fractured core (base-case) 56
3.2.3 Extinction/propagation condition 58
3.2.4 Analysis based on dimensionless numbers 63
3.2.5 Horizontal configuration 66
3.2.6 Oil production mechanisms 67
3.2.7 Shape of the coke zone 70
3.2.8 Summary 71
3.3 Simulation of ISC process in a single matrix block 71
i Table of contents

3.3.1 Temperature 72
3.3.2 Coke zone 75
3.3.3 Oil saturation 76
3.3.4 Combustion front velocity 77
3.3.5 Water saturation and steam plateau 78
3.3.6 Oil upgrading 79
3.3.7 Oil production 80
3.3.8 Summary 81
3.4 Multi-block simulation 82
3.4.1 Temperature profile 83
3.4.2 Fluid saturations 84
3.4.3 Coke zone 85
3.4.4 Oil production 86
3.4.5 Average temperature and mole fraction 86
3.4.6 Horizontal and vertical extension of the temperature 89
3.4.7 Summary 91
CHAPTER 4. EXPERIMENTAL ANALYSIS OF ISC IN FRACTURED
CARBONATES 92
4.1 Material and methods 92
4.1.1 Experimental set up 92
4.1.2 Oil-sand mixture preparation 95
4.1.3 Consolidated core saturation 95
4.2 Combustion tube experiments 96
4.2.1 Combustion in a non-consolidated porous medium 97
4.2.2 Combustion in a consolidated porous medium 101
4.3 Kinetic cell experiments 107
4.3.1 Kinetics in a non-consolidated medium 107
4.3.2 Kinetics in a consolidated medium 109
4.4 Numerical simulation 112
4.4.1 Kinetic cell simulation 112
4.4.2 Combustion tube simulation 114
4.4.3 Summary 117
CHAPTER 5. CONCLUSIONS AND PERSPECTIVES 118
5.1 Conclusions 118
5.2 Perspectives 120
APPENDIXES 124
A. Combustion in fractured core 125
A.1 Effect of oxygen diffusion coefficient on ISC 125
A.2 Effect of matrix permeability on ISC 128
B. Upscaling of the solid-gas combustion using the volume averaging method 132
B.1 Introduction 132
B.2 Solid-gas combustion in fractured porous medium 133
References 139






ii Table of contents

Table of figures

Figure 2.1. One dimensional smoldering model. 10
Figure 2.2. Reaction leading (left) and reaction trailing (right) structures. 11
Figure 2.3. In situ combustion process (Sarathi 1999). 12
Figure 2.4. Typical oxygen consumption curve in ISC process (Sarathi 1999). 14
Figure 2.5. General classification of crude oil (Audibert et al. 1991). 15
Figure 2.6. Comparison of long distance (conventional methods) and short distance (THAI and
SAGD) processes for heavy oil recovery (Greaves 2006). 17
Figure 2.7. Diagram of forward in situ combustion (Castanier et al. 2003). 20
Figure 2.8. Comparison of steam and combustion fronts (top, Wolf lake oil and bottom, Nielburg
crude). 21
Figure 2.9. Schulte and De Vries experimental setup (Schulte and De Vries, 1985). 24
Figure 2.10. An example of upscaling strategy (Delaplace et al. 2006). 25
Figure 2.11. Heterogeneous structure of the fractured reservoir at different scales. 27
Figure 2.12. Simplified representation of the heterogeneity in fractured reservoir at different scales. 28
Figure 2.13. Basic idealized models of a fractured matrix. 29
Figure 2.14. Simplified representation of the fracture and matrix in our study. 30
Figure 2.15. Experimental system used by Zinn et al. (2004, see Golfier et al. 2007). 34
Figure 2.16. Empirical categorization of one or two-equation model based on Péclet number. 34
Figure 2.17. Pore scale description of the combustion process. 35
Figure 3.1. Oxygen mole fraction vs. time at 0.03m from the inlet, grid size effect. 46
Figure 3.2. Oxygen mole fraction vs. time at from the sides, grid size effect. 47
Figure 3.3. Schematic of one dimensional solid-gas combustion model. 47
Figure 3.4. 1-D solid-gas combustion front velocity, simulation and analytical solution. 49
Figure 3.5. Cumulative oil and water production, comparison of simulation and experiment. 51
Figure 3.6. Peak temperature along the core length, simulation and experimental results. 52
Figure 3.7. Peak temperature and coke concentration along the core (12 block). 52
Figure 3.8. Simulation result for 24 block, comparison with Kumar’s results. 53
Figure 3.9. Comparison of the coke content for 12, 24 and 48-block cases. 54
Figure 3.10. Schematic of the fractured core model. 55
Figure 3.11. Cumulative oil and water production under ISC (base case). 56
Figure 3.12. Temperature profiles at the core center during ISC (base-case). 57
Figure 3.13. Coke concentration profiles at the core center during ISC (base-case). 57
Figure 3.14. Oil production vs. oxygen diffusion and matrix permeability. 59
Figure 3.15. Temperature and oil saturation in first row [K0.1, D0.1] and [K0.1, D0.02]. 60
Figure 3.16. Temperature and saturation profiles for different points in the Table (3.7). 61
Figure 3.17. Temperature and saturation profiles for [K0.1, D0.02] and [K0.02, D0.02]. 62
Figure 3.18. Temperature and saturation profiles for [K0.01, D0.01] and [K0.002, D0.01]. 62
Figure 3.19. Rate of reacted oxygen vs. time. 65
Figure 3.20. Mass of oil produced in fractured and non-fractured cores. 67
Figure 3.21. Cumulative oil production in horizontal and vertical configurations. 68
F

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents