Power Integrations Inc Hellyer Avenue San Jose CA USA
28 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Power Integrations Inc Hellyer Avenue San Jose CA USA

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
28 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Power Integrations, Inc. 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 Title Engineering Prototype Report – 3 W Universal Input TinySwitch?-II TNY264 Power Supply Specification 3 W, (9 V, 0.33 A), 85–265 VAC input Target Applications AC Adapters (cordless phones, answering machines and other consumer products) Author Power Integrations Applications Dept. Doc Num. EPR-000014 Date 02 Apr 2001 Revision 1.2 Features • Cost effective (minimum parts count and single sided PC board) • Low Cost EF12.6 transformer (132 kHz operation) • Compact design: 2.0” x 1.2” x 0.75” • No-load consumption < 250mW (230 VAC) • Auto-restart function limits overload output power • Short circuit protected • Built-in circuitry practically eliminates audible noise (standard varnished transformer) • ON/OFF control allows simple Zener reference and eliminates the need for loop compensation • No-load regulation achieved without preload resistor • Low EMI due to frequency jittering: meets CISPR22B with output capacitively grounded • Optional under-voltage detect eliminates power-up glitches • Hysteretic thermal shutdown: Protects power supply and automatically recovers when fault is removed

  • no-load regulation

  • output ripple

  • hysteretic thermal

  • full load

  • performance curves

  • low cost

  • ac adapters

  • transformer diagram

  • power supply

  • conducted emissions


Sujets

Informations

Publié par
Nombre de lectures 13
Langue English

Extrait

Engineering Prototype Report –
Title 3 W Universal Input TinySwitch -II
TNY264 Power Supply
3 W, (9 V, 0.33 A), 85–265 V inputSpecification AC
Target AC Adapters (cordless phones,
answering machines and other consumerApplications
products)
Power Integrations Applications Dept.Author
EPR-000014Doc Num.
Date 02 Apr 2001
Revision 1.2
Features
• Cost effective (minimum parts count and single sided PC board)
• Low Cost EF12.6 transformer (132 kHz operation)
• Compact design: 2.0” x 1.2” x 0.75”
• No-load consumption < 250mW (230 V )AC
• Auto-restart function limits overload output power
• Short circuit protected
• Built-in circuitry practically eliminates audible noise (standard varnished transformer)
• ON/OFF control allows simple Zener reference and eliminates the need for loop compensation
• No-load regulation achieved without preload resistor
• Low EMI due to frequency jittering: meets CISPR22B with output capacitively grounded
• Optional under-voltage detect eliminates power-up glitches
• Hysteretic thermal shutdown: Protects power supply and automatically recovers when fault is
removed
Power Integrations, Inc.
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EPR-000014 – 9 V, 0.33 A, 3 W TNY264 Adapter 02-Apr-2001
Table of Contents
1 Introduction................................................................................................................. 3
2 Power Supply Specification ........................................................................................ 4
3 Schematic ................................................................................................................... 5
4 Description.................................................................................................................. 5
5PCB Layout 7
6 Bill of Materials ........................................................................................................... 7
7 Transformer Specification........................................................................................... 8
7.1 Electrical Specifications .......................................................................................... 8
7.2 Materials 8
7.3 Transformer Diagram .............................................................................................. 9
7.4 Ter Construction ....................................................................................... 9
7.5 Transformer Sources............................................................................................... 9
8 Performance Data..................................................................................................... 10
8.1 Output Regulation ................................................................................................. 10
8.2 Efficiency............................................................................................................... 11
8.3 Standby Power Consumption................................................................................ 11
8.4 Output Overload.................................................................................................... 12
8.5 Thermal Performance............................................................................................ 12
8.6 Conducted Emissions............................................................................................ 14
8.7 Acoustic Emissions ............................................................................................... 16
9 Waveform Scope Plots ............................................................................................. 18
9.1 Output Ripple Measurement Results .................................................................... 18
9.1.1 DC Ripple Ment Technique.............................................................. 19
9.2 DC Output Load Transient Response ................................................................... 20
9.2.1 10% to 50% load change, 265 V ................................................................. 20AC
9.2.2 10% to 100% load 265 V ............................................................... 20AC
9.3 Turn-On Delay and Overshoot.............................................................................. 21
9.4 Drain Switching Waveforms.................................................................................. 22
9.4.1 85 V , Full load, 132 kHz operation 22AC
9.4.2 85 V , Full load, ~100 kHzon............................................................ 22AC
9.4.3 265 V , Full load, 132 kHz operation............................................................ 23AC
9.4.4 265 V , Full load, ~60 kHz 23AC
10 AC Surge and 100 kHz Ring Wave Immunity........................................................... 24
10.1 Differential Mode Surge Test Results................................................................ 24
10.2 Common Mode Surge Test Results................................................................... 25
10.3 Differential Mode 100 kHz Ring Wave Test Results ......................................... 25
10.4 Common Mode 100kHz Ring Wave Test Results ............................................. 26
11 Revision History........................................................................................................ 27
Important Note:
Although the EP14 is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com Page 2 of 28
02-Apr-2001 EPR-000014 – 9 V, 0.33 A, 3 W TNY264 Adapter
1 Introduction
This document is an engineering report that describes a 9 V, 0.33 A, 3 W output and
universal input power supply utilizing the TNY264P. For evaluation, a fully built and
tested prototype (EP14) can be found within the Design Accelerator Kit, DAK-14.
This document contains the power supply specification, schematic, bill of materials and
transformer documentation. Typical operating characteristics are presented at the rear
of the report and consist of performance curves, tables and waveform photos.
1.2” / 30.5 mm
2” / 51.5 mm
Figure 1. EP14 Populated Circuit Board (approx. 2:1 scale)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.comPage 3 of 28
EPR-000014 – 9 V, 0.33 A, 3 W TNY264 Adapter 02-Apr-2001
2 Power Supply Specification
Description Symbol Min Typ Max Units Comment
Input
Input Voltage V 85 115/230 265 VIN AC
Input Frequency f 47 50/60 64 HzLINE
No-load Input Power (115 V ) 125 mWAC
No-load Input Power (230 V ) 250 mWAC
Output
†Output Voltage V 8.37 9.63 V (± 7%) At output terminalsOUT DC
20 MHz BWOutput Ripple Voltage V 100 mVRIPPLE PK-PK
Output Current I 00.33AOUT
Continuous Output Power P 03.0WOUT
0 – 100% load
Total Regulation -2 +2 %
85 – 265 VAC
At full loadEfficiency η 67 71
Environmental
Meets CISPR22 BConducted EMI
Designed to meet IEC950Safety
o
Natural convectionExternal Ambient Temperature T 050 CAMB

Output voltage tolerance may be improved through choice of feedback components
Table 1. Power Supply Specification
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com Page 4 of 28
02-Apr-2001 EPR-000014 – 9 V, 0.33 A, 3 W TNY264 Adapter
3 Schematic
Figure 2. EP14 Power Supply Schematic
4 Description
The EP14 is a single 9 V output power supply rated at 3 W. The power supply wasDC
designed to operate over an AC input range of 85-265 V , 47-64Hz and provides 9 VAC DC
output with ±7% accuracy to no-load. Operating efficiency is 67% worst case at full load
across the entire AC line range. Compliance to CISPR22 / EN55022 Class B conducted
emissions and surge immunity test level 1 (1 kV, 1.2 / 50 µS - IEC1000-4-5) is achieved
with minimum component count. The unit is designed to comply with international safety
standards per IEC950. Minimum parts count enables a space conscious design, with
outside dimensions 1.2” x 2.0” x 0.75”.
TinySwitch-II provides several advantages in this application. The enhanced ON/OFF
control scheme allows tight regulation using a simple, low-cost secondary side Zener
reference and no loop compensation. No-load regulation is achieved without a dummy
load. The enhanced ON/OFF control scheme dynamically alters the internal current limit
as load requirements dictate. This approach reduces cycle skipping when the core flux
density is high; thus minimizing acoustic noise. Th

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents