Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Large signal modeling of GaN HEMTs for UMTS base station power amplifier design taking into account memory effects [Elektronische Ressource] / vorgelegt von Suramate Chalermwisutkul

151 pages
Large Signal Modeling of GaN HEMTsfor UMTS Base Station Power Amplifier DesignTaking into Account Memory EffectsVon der Fakulta¨t fu¨r Elektrotechnik und InformationstechnikderRheinisch–Westf¨alischen Technischen Hochschule Aachenzur Erlangung des akademischen Grades einesDoktors der Ingenieurwissenschaftengenehmigte Dissertationvorgelegt vonDiplom–Ingenieur Suramate Chalermwisutkulaus Chonburi, ThailandBerichter: Univ.-Prof. Dr.-Ing. Rolf H. JansenUniv.-Prof. Dr. Petri Mahonen¨ ¨Tag der mu¨ndlichen Pru¨fung: 5. Februar 2007Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfu¨gbar.ContentsList of Acronyms and Symbols v1. Introduction 1rd1.1. Wireless Communication with the 3 Generation Mobile Radio . . . . . 11.2. Power Amplifiers for UMTS Mobile Base Stations . . . . . . . . . . . . . 21.3. GaN-based Transistors as Power Devices for Mobile Base Stations . . . . 31.4. Memory Effects of GaN-Based Transistors . . . . . . . . . . . . . . . . . 51.5. Device Modeling Taking into Account Memory Effects . . . . . . . . . . 61.6. Objectives of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.7. Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72. Power Amplifiers for Mobile Communication Applications 92.1. Specifications of Power Amplifiers for Wireless, Mobile Communication . 102.1.1. Operating Frequency and Bandwidth . . . . . . . . . . . . . . . . 102.1.2. Power Gain . . . . . . .
Voir plus Voir moins

Large Signal Modeling of GaN HEMTs
for UMTS Base Station Power Amplifier Design
Taking into Account Memory Effects
Von der Fakulta¨t fu¨r Elektrotechnik und Informationstechnikder
Rheinisch–Westf¨alischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
genehmigte Dissertation
vorgelegt von
Diplom–Ingenieur Suramate Chalermwisutkul
aus Chonburi, Thailand
Berichter: Univ.-Prof. Dr.-Ing. Rolf H. Jansen
Univ.-Prof. Dr. Petri Mahonen¨ ¨
Tag der mu¨ndlichen Pru¨fung: 5. Februar 2007
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfu¨gbar.Contents
List of Acronyms and Symbols v
1. Introduction 1
rd1.1. Wireless Communication with the 3 Generation Mobile Radio . . . . . 1
1.2. Power Amplifiers for UMTS Mobile Base Stations . . . . . . . . . . . . . 2
1.3. GaN-based Transistors as Power Devices for Mobile Base Stations . . . . 3
1.4. Memory Effects of GaN-Based Transistors . . . . . . . . . . . . . . . . . 5
1.5. Device Modeling Taking into Account Memory Effects . . . . . . . . . . 6
1.6. Objectives of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7. Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Power Amplifiers for Mobile Communication Applications 9
2.1. Specifications of Power Amplifiers for Wireless, Mobile Communication . 10
2.1.1. Operating Frequency and Bandwidth . . . . . . . . . . . . . . . . 10
2.1.2. Power Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4. Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5. Thermal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6. Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Amplifier Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. High Frequency Power Transistors . . . . . . . . . . . . . . . . . . . . . 17
2.4. Semiconductor Materials for High Frequency Power Transistors . . . . . 21
2.5. Requirements of Power Amplifiers in UMTS-Systems . . . . . . . . . . . 24
2.5.1. Power Transistors for UMTS Base Stations . . . . . . . . . . . . . 24
2.5.2. Linearization Techniques . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3. Techniques to Improve Average Efficiency . . . . . . . . . . . . . 26
2.6. Chapter 2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3. Multiband, Multistandard Amplifiers for Mobile Base Stations 29
3.1. Wideband Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2. Reconfigurable Narrowband Amplifiers . . . . . . . . . . . . . . . . . . . 32
3.3. ChoiceoftheAmplifierClassforReconfigurableMultistandardBaseStations 33
3.4. Choice of a Power Device for Reconfigurable Multistandard Base Stations 35
3.5. Chapter 3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
iii Contents
4. Large Signal Transistor Modeling for Power Amplifier Design 41
4.1. Device Model Classification . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2. Methodology of Model Parameter Generation . . . . . . . . . . . . . . . 43
4.3. Parameter Extraction for the Standard Model . . . . . . . . . . . . . . . 44
4.3.1. Pulsed Multibias I-V and S-parameter Measurement. . . . . . . . 44
4.3.2. Multibias Optimization for the Linear Model . . . . . . . . . . . . 48
4.3.3. Extraction of Large Signal Model Parameters . . . . . . . . . . . 50
4.3.4. Direct Optimization and Application Oriented Modeling . . . . . 50
4.4. Model Parameter Extraction for Additional Effects. . . . . . . . . . . . . 51
4.4.1. Modeling of Gate Source Diode . . . . . . . . . . . . . . . . . . . 51
4.4.2. Dispersion of the Output Conductance at Low Frequency . . . . . 52
4.4.3. Gate Drain Breakdown . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.4. Thermal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.5. Charge Carrier Trapping . . . . . . . . . . . . . . . . . . . . . . . 55
4.5. Chapter 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5. Characterization of Memory Effects due to Trapping 57
5.1. Measurements for the Determination of Trapping Effects . . . . . . . . . 58
5.1.1. Gate Lag Measurement . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2. Drain Lag Measurement . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.3. Isothermal Measurement of the Current Lag . . . . . . . . . . . . 61
5.1.4. Low Frequency Dispersion . . . . . . . . . . . . . . . . . . . . . . 62
5.1.5. Current Collapse Measurements . . . . . . . . . . . . . . . . . . . 62
5.1.6. Measurement with Pulse-Modulated RF-Signal. . . . . . . . . . . 63
5.2. List of Performed Measurements . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1. Gate Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2. Drain Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3. Time Domain Measurement with Constant DC Power . . . . . . . 70
5.3.4. Low Frequency Dispersion . . . . . . . . . . . . . . . . . . . . . . 70
5.3.5. Current Collapse Measurements . . . . . . . . . . . . . . . . . . . 71
5.3.6. Pulse-Modulated RF Measurements . . . . . . . . . . . . . . . . . 75
5.3.7. Dependency on the Lighting Condition . . . . . . . . . . . . . . . 76
5.3.8. Temperature and Gate Width Dependency . . . . . . . . . . . . . 77
5.4. Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5. Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6. Modeling of Memory Effects due to Trapping and Simulation Results 91
6.1. Representation of Trapping Effects on the Device Level . . . . . . . . . . 92
6.2. Transient Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3. Pulsed I-V Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4. Temperature Dependency of Trapping Effects . . . . . . . . . . . . . . . 103
6.5. Power Sweep Simulations (Harmonic Balance) . . . . . . . . . . . . . . . 103
6.6. S-Parameter Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7. Envelope Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Contents iii
6.8. Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7. Summary and Overall Conclusions 115
A. EEHEMT Nonlinear Model Parameters 119
B. EEHEMT Nonlinear Model Equations 123
C. EEHEMT Model Parameters of the 8x250 μm GaN HEMT 127
Bibliography 129List of Acronyms and Symbols
Acronyms:
2DEG Two-dimensional electron gas
3D Three-dimensional
2G Second generation
3G Third generation
3GPP Third generation partnership project
ACPR Adjacent channel power ratio
ADC Analog-digital converter
ADS Advanced Design System
BJT Bipolar junction transistor
BTS Base transceiver station
DAC Digital-analog converter
DUT Device under test
EDGE Enhanced data for GSM evolution
EER Envelope elimination and restoration
EVDO/DV Evolution data only / Data voice
EVM Error vector magnitude
FDD Frequency division duplex
FET Field effect transistor
FPGA Field programmable gate array
GERAN GSM EDGE radio access network
GPRS General packet radio service
GSM Global system for mobile communication
HBT Hetero-junction bipolar transistor
HEMT High electron mobility transistor
HSDPA High-speed downlink packet access
IMD3 Third-order intermodulation distortion
LDMOS Lateral diffused metal oxide semiconductor
LNA Low noise amplifier
LUT Look-up table
MBE Molecular beam epitaxy
MEMS Micro-electro-mechanical system
MESFET Metal-semiconductor FET
MMIC Monolithic microwave integrated circuit
MOCVD Metal organic chemical vapor deposition
vvi List of Acronyms and Symbols
MOSFET Metal-oxide-semiconductor FET
MOSHFET Metal-oxide-semiconductor heterojunction FET
MW Microwave
OFDM Orthogonal frequency division multiplexing
PA Power amplifier
PAE Power-added efficiency
pHEMT pseudomorphic HEMT
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RF Radio frequency
SDD Symbolically defined device
TDD Time division duplexing
UMTS Universal mobile telecommunications system
VLSI Very large-scale integration
VMOS Vertical metal oxide semiconductor
WCDMA Wideband code division multiple access
WLAN Wireless local area network
Symbols:
q Elementary chargee
k Boltzmann constant
η Drain efficiencyD
P DC power supplied to an amplifierDC
P Amplifier input power (RF)in
P Amplifier output power (RF)out
G Power gain
I Diode saturation currentS
N Ideality constant of a diode
V Thermal voltageT
V Gate threshold voltageTO
I Drain-source currentds
I Gate-source currentgs
V Drain-source voltageds
V Gate-source voltagegs
R Real part of the load impedanceL
X Imaginary part of the load impedanceL
PWt Smallest pulse width for a reliable pulsed measurementmin
idt Steady state time of the current measurement with a pulsedsteady
modeling system
vg
t Steady state time of the input voltage generated by a voltagesteady
source in a pulsed modeling system
RFt RF measurement timemeas
idt Minimum current measurement time of a pulsed modeling systemmin
V Breakdown voltagebrvii
V Knee voltagek
R Optimal load for maximum power of a small signal amplifierOpt
I Maximum current through the loaddss
f Corner frequency of the low frequency dispersionDisp
τ Time constant of the self-heatingth
R Thermal resistance for the modeling of self-heatingth
C Thermal capacitance for the modeling of self-heatingth
instI Instantaneous current directly after the transition of the voltage
level (pulsed source)
glτ Gate lag time constant
dl,trapτ Trapping time constant of the drain lag process
dl,detrapτ Detrapping time constant of the drain lag process
V Gate quiescent voltage of a pulsed measurementgsq
V Drain quiescent voltage of a pulsed measurementdsq
t Time
τ Time constant of the trapping effectTrap
I Steady state drain-source current in case of trapping effect0
I Time dependent term of the drain-source current in case of1
trapping effect
f Drain current correction factor due to trapping effectstrap
f Drain current correction factor due to self-heatingthermal
I (V = 0,V = 0) Drain current from a pulsed measurement with the quiescentgsq dsqds
point V = 0V , V =0Vgsq dsq
I Drain current measured under isothermal conditionds,isothermal
I Current through a forward-biased diodeDiode
R Dynamic resistance of the diode for the modeling of the drain lagDiode
(trapping process)
R Resistance for the modeling of the drain lag (detrapping process)b
C Capacitance for the modeling of the drain lagb
V Device control voltagecon
V Virtual gate voltage due to gate laggl
V Virtual back-gate voltage due to drain lagdl
β Constant of proportionality between the gate lag control voltagegl
and Vgl
β Constant of proportionality between the drain lag control voltagedl
on Vdl
α First parameter describing the form of the current in time domainc
α Second parameter describing the form of the current in timer
domain
′C Capacitance for the modeling of the drain lagBS
I Saturation current of the diode for the modeling of drain lags,d
t Pulse width of the pulsed modeling systempw
f The frequency corresponding to the pulse width of the pulsedpw
modeling system
V Saturation voltage for the case V = 0sat0 dsqviii List of Acronyms and Symbols
V Parameter which models the dependency of V on Vsat1 sat gs
N Parameter which models the dependency of V on VKN sat dsq
N Parameter which models the dependency of HEMT’s outputKAPA
conductance on Vdsq
KAPA0 Output conductance of a HEMT in case V = 0dsq
T Temperature (Kelvin)
ϑ Channel-temperature in C
N Constant which adds the temperature-dependency to the trappingϑ
time constant
ϑ=0 Cτ Nominal trapping time constant at the temperature 0 C
(extrapolated)
f Carrier frequencyc
L Choke inductanceChoke
?
?
?

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin