//img.uscri.be/pth/2c499722077835f1fd80de851fa0fc8b1fe9b762
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Synthèse de fréquence dans une architecture multi-radio cognitive, Frequency synthesis for cognitive multi-radio

De
160 pages
Sous la direction de Geneviève Baudoin
Thèse soutenue le 12 novembre 2010: Brno University of Technology, Paris Est
Cette thèse porte sur les aspects de conception d'un synthétiseur de fréquence pour les émetteurs-récepteurs dans les architectures multi-radios cognitives. La largeur de bande couverte par ce synthétiseur multi-radio correspond à la bande de fréquences des normes de communication sans fil les plus diffusées, fonctionnant dans la bande de fréquence de 800 MHz à 6 GHz. Du fait que l'opération multi-standard est indispensable, le synthétiseur doit répondre aux exigences les plus strictes et parfois contradictoires. Compte tenu de ces exigences, une nouvelle approche pour une synthèse de fréquence multi-mode a été conçue. Un synthétiseur de fréquence hybride, basé sur le principe de la boucle à verrouillage de phase a été proposé et un nouveau protocole de commutation a été présenté et validé sur une carte d'évaluation expérimentale. Cette approche combine les modes fractionnel et entier avec une topologie de filtre à bande commuté. Par rapport aux techniques standard, la configuration hybride permet une grande souplesse en matière de reconfiguration et d'ailleurs, elle offre une complexité des circuits relativement faible ainsi qu'une faible consommation électrique. Cette architecture assure la reconfiguration de la bande passante de la boucle ainsi que la résolution, le niveau du bruit de phase et du temps d'accrochage et, par conséquent, elle peut s'adapter à des besoins divers, imposés par les normes concernées. Des analyses correspondantes, des simulations et des mesures ont été réalisées afin de vérifier les performances et les fonctionnalités de la solution proposée. A part la conception du synthétiseur de fréquence multi-radio, une campagne de mesures régionales de l'utilisation du spectre radio a été réalisée dans le cadre de la recherche de cette thèse. Ces mesures sont fondées sur le principe de détection de l'énergie et nous démontrent le degré d'utilisation du spectre radio dans les différentes régions, notamment dans la ville de Brno en République Tchèque et dans la ville de Paris et sa banlieue en France. L'objectif de cette campagne de mesures expérimentales a été d'estimer le degré d'utilisation du spectre radio dans des environnements différents et de souligner le fait qu'une nouvelle approche pour la gestion du spectre radio est inévitable
-Radio cognitive
-Accès dynamique au spectre
-Synthèse de fréquence
-Multi-radio
-Boucle à verrouillage de phase
This doctoral thesis deals with design aspects of a reconfigurable frequency synthesizer for flexible radio transceivers in future cognitive multi-radios. The frequency bandwidth to be covered by this multi-radio synthesizer corresponds to the frequency bands of the most diffused wireless communication standards in the frequency band 800 MHz to 6 GHz. Since multi-standard operation is required, the synthesizer must fulfil the most stringent and sometimes conflicting requirements. Given these requirements, a novel approach for multi-mode frequency synthesis has been conceived. A hybrid phase locked loop based frequency synthesizer has been proposed and a novel switching protocol has been presented and validated on an experimental evaluation board. This approach combines fractional-N and integer-N modes of operation with switched loop filter topology. Compared to standard PLL techniques, the hybrid configuration provides a great flexibility in terms of reconfiguration and moreover, it offers relatively low circuit complexity and low power consumption. This architecture provides reconfiguration of the loop bandwidth, frequency resolution, phase noise and settling time performance and hence, it can adapt itself to diverse requirements given by the concerned wireless communication standards. Corresponding analyses, simulations and measurements have been carried out in order to verify the performance and functionality of the proposed solution. A part from the design of the multiband frequency synthesizer, a set of regional measurements of the radio spectrum utilization has been carried out in the framework of this dissertation research. These measurements are based on the energy detection principle and provide a close look at the degree of radio spectrum utilization in different regions, namely in the city of Brno in the Czech Republic and in the city of Paris and one of its suburbs in France. The goal of the experimental measurement campaign has been to estimate the degree of radio spectrum usage in a particular environment and to point out the fact that a new approach for radio spectrum management is inevitable
-Cognitive radio
-Dynamic spectrum access
-Frequency synthesis
-Multi-radio
-Phase locked loop
Source: http://www.theses.fr/2010PEST1044/document
Voir plus Voir moins

BRNO UNIVERSITY
OF TECHNOLOGY





Thèse de doctorat en cotutelle

Université Paris-Est, ESIEE Paris, Laboratoire ESYCOM, École Doctorale
Maths STIC, Spécialité: Electronique, Optronique et Systèmes
et
Brno University of Technology, Faculty of Electrical Engineering and
Communication, Department of Radio Electronics


présentée et soutenue publiquement par

Václav Valenta

le 12 novembre 2010


Titre:
Frequency synthesis for cognitive multi-radio
Synthèse de fréquence dans une architecture
multi-radio cognitive



Thèse dirigée par :
Prof. Geneviève Baudoin (ESYCOM, ESIEE Paris, France).
Prof. Martine Villegas (ESYCOM, ESIEE Paris, France).
Assoc. Prof. Roman Maršálek (VUT Brno, République Tchèque)


Composition du jury :
Rapporteurs : Assoc. Prof. Jiří Masopust (FEL Plzeň, République Tchèque)
Prof. Jacques Palicot (SUPELEC Rennes, France )
Examinateurs : Dr. Bohdan Růžička (AVČR Brno, République Tchèque)
tel-00597461, version 1 - 1 Jun 2011

tel-00597461, version 1 - 1 Jun 2011iii

Acknowledgements
First of all, I would like to acknowledge my gratitude to my supervisors Mme Geneviève
Baudoin, Mme Martine Villegas and Mr Roman Maršálek for their guidance and their
persistent help throughout my doctoral studies. Your professional support helped me to
identify and to understand actual research problems and to pursue their solutions. Thank you
for your patience, countless thoughtful discussions and for your friendly attitude as it has
greatly contributed to my professional and personal growth and made it possible to complete
this work. Thanks to Roman for having introduced me to the academic team at ESIEE Paris.
Without his initial support and advice, this work could not have started. I would further like to
express my thanks to Professor Honggang Zhang and to his colleagues for their expert advice
and collaboration during my research visit at the Zhejiang University in China.

I am grateful to all members of the jury for taking their time reading this thesis and namely to
Mr Jiří Masopust and Mr Jacques Palicot for reviewing this manuscript and to Mr Růžička for
accepting to participate as the external examiner.

I wish to express my thanks to the administrative staff at both universities for their kind help
and assistance during the course of this research as well as to government authorities for the
financial support from diverse resources, namely from the French Government scholarship,
scholarship from the Université Paris-Est and from the Czech Ministry of Education.

My sincere thanks go to my dear colleagues and friends from the laboratory ESYCOM in
France and the Department of Radio Electronic in the Czech Republic. The last three years
have been an unforgettable experience for me and it has been a great pleasure to spend these
moments with you, either in the laboratory or simply around a table during the pause-café.

Last, but truly not least, I want to thank to my parents for being with me and for having taught
me to live and to love the moments of life we have. I also wish to thank to my fiancée Claire
and to her family for their love, support and encouragement.

tel-00597461, version 1 - 1 Jun 2011iv



tel-00597461, version 1 - 1 Jun 2011v

Abstract
Title: Frequency synthesis for cognitive multi-radio
Keywords: Cognitive radio, dynamic spectrum access, frequency synthesis, multi-radio,
phase locked loop

This doctoral thesis deals with design aspects of a reconfigurable frequency synthesizer for
flexible radio transceivers in future cognitive multi-radios. The frequency bandwidth to be
covered by this multi-radio synthesizer corresponds to the frequency bands of the most
diffused wireless communication standards operating in the frequency band ranging from
800 MHz to 6 GHz. Since multi-standard operation is required, the synthesizer must fulfil the
most stringent and sometimes conflicting requirements. Given these requirements, a novel
approach for multi-mode frequency synthesis has been conceived.
A hybrid phase locked loop (PLL) based frequency synthesizer has been proposed and a novel
switching protocol has been presented and validated on an experimental evaluation board.
This approach combines fractional-N and integer-N modes of operation with switched loop
filter topology. Compared to standard PLL techniques, the hybrid configuration provides a
great flexibility in terms of reconfiguration and moreover, it offers relatively low circuit
complexity and low power consumption. This architecture provides reconfiguration of the
loop bandwidth, frequency resolution, phase noise and settling time performance and hence, it
can adapt itself to diverse requirements given by the concerned wireless communication
standards. Corresponding analyses, simulations and measurements have been carried out in
order to verify the performance and functionality of the proposed solution.
Apart from the design of the multiband frequency synthesizer, a set of regional measurements
of the radio spectrum utilization has been carried out in the framework of this dissertation
research. These measurements are based on the energy detection principle and provide a close
look at the degree of radio spectrum utilization in different regions, namely in the city of Brno
in the Czech Republic and in the city of Paris and one of its suburbs in France. The goal of the
experimental measurement campaign has been to estimate the degree of radio spectrum usage
in a particular environment and to point out the fact that a new approach for radio spectrum
management is inevitable.
tel-00597461, version 1 - 1 Jun 2011vi



tel-00597461, version 1 - 1 Jun 2011vii

Table of contents
List of figures ........................................................................................................................... xi
List of tables .......................... xvii
List of acronyms .................................................................................................................... xix
Preface ....................................................................................................................................... 1
Chapter 1 Towards better radio spectrum utilization .................................................... 5
1.1. Survey on spectrum utilization in Europe ...................................................................... 6
1.1.1. Measurement conditions ..................................................................................... 9
1.1.1.1. Measurement locations ......... 9
1.1.1.2. Measurement equipment and measurement method ............................ 9
1.1.1.3. Processing of measured data .............................................................. 10
1.1.2. Spectrum utilization results and interpretation ................. 11
1.1.3. Summary of major observations ....................................... 24
1.2. Cognitive radio as a solution ........................................................................................ 26
1.3. Spectrum sensing techniques 28
1.3.1. Energy detection ............................................................................................... 28
1.3.2. Matched filter detection .................... 29
1.3.3. Cyclostationary feature detection ..................................... 30
1.4. Standardization activities related to cognitive radio .................................................... 32
1.4.1. IEEE 802.22 ...................................................................... 32
1.4.2. IEEE P1900/IEEE SCC41 ................ 33
1.5. Chapter summary.......................................... 34
Chapter 2 Multi-radio RF front-end: design aspects and challenges .......................... 37
2.1. Software defined radio ................................................................................................. 38
2.2. Performance metrics and evaluation criteria 40
2.2.1. Peak output power and peak to average power ratio ........................................ 40
2.2.2. Error vector magnitude ..................................................... 43
2.2.3. Adjacent channel power interference ............................................................... 43
tel-00597461, version 1 - 1 Jun 2011viii

2.3. Multi-radio front-end requirements and design considerations .................................... 44
2.4. RF architectures for multi-radio transceivers ............................................................... 47
2.4.1. Frequency translation techniques ..................................... 47
2.4.1.1. Homodyne structure: direct frequency conversion ............................. 47
2.4.1.2. Heterodyne structure: double frequency conversion .......................... 48
2.4.1.3. Low IF structure ................................................................................. 49
2.4.2. Solutions for high-efficient multi-radio transmitters ........ 49
2.4.2.1. Polar transmitter architecture ............................................................. 51
2.4.2.2. Cartesian transmitter architecture ....................... 52
2.5. Chapter summary.......................................................................................................... 53
Chapter 3 Frequency synthesis for cognitive multi-radio transceivers ....................... 55
3.1. Performance metrics of frequency synthesizers ........................................................... 56
3.1.1. Signal purity ..................................................................... 56
3.1.1.1. Phase noise and timing jitter............................... 57
3.1.1.2. Spurious tones .................................................................................... 60
3.1.2. Transient performance ...................... 60
3.1.3. Other specifications .......................... 60
3.2. Frequency synthesizer requirements for multi-radio RF front-ends ............................ 61
3.2.1. Frequency range and frequency resolution ....................................................... 61
3.2.2. Phase noise requirements .................................................. 62
3.2.2.1. GSM ................................................................................................... 62
3.2.2.2. Mobile WiMAX ................. 63
3.2.3. Settling time requirements ................................................ 64
3.3. Design aspects and requirements of frequency synthesis for spectrum sensing .......... 65
3.4. Frequency synthesis techniques ................................................... 66
3.4.1. Direct analog frequency synthesis .................................................................... 67
3.4.2. Direct digital frequency synthesis .... 67
3.4.3. Digital period frequency synthesis ... 68
3.5. Frequency synthesis based on the PLL ........................................................................ 69
3.5.1. PLL architecture and operation ........ 69
3.5.1.1. Linear PLL model............... 71
3.5.1.2. Integer-N PLL ..................................................................................... 74
3.5.1.3. Fractional-N PLL ................ 74
3.5.2. All digital phase locked loop ............ 77
3.5.3. Phase noise analyses of PLL based frequency synthesis .................................. 78
3.5.3.1. Reference noise contribution .............................................................. 78
3.5.3.2. VCO noise contribution ...... 80
3.5.3.3. Loop filter noise contribution ............................. 81
tel-00597461, version 1 - 1 Jun 2011ix

3.5.3.4. Quantization noise contribution from ΔΣ Modulator ......................... 84
3.6. Design example: frequency synthesis for Mobile WiMAX ......................................... 87
3.7. Chapter summary.......................................................................... 93
Chapter 4 Hybrid multi-radio frequency synthesis ....................................................... 95
4.1. Multi-radio PLL architecture ........................................................ 96
4.1.1. Multi-radio frequency plan ............................................... 97
4.1.2. Dual mode of operation .................. 100
4.1.2.1. Integer-N mode for cellular systems ................. 101
4.1.2.2. Hybrid mode for connectivity systems ............. 103
4.2. Validation through simulations and measurements .................................................... 107
4.2.1. Description of the evaluation test bed ............................ 108
4.2.2. Validations of individual configurations ........................ 109
4.2.2.1. Analysis of the phase noise performance ......................................... 111
4.2.2.2. Analysis of the transient performance .............. 114
4.2.2.3. Analysis of the timing mismatch in the switching procedure .......... 115
4.3. Chapter summary........................................................................ 120
Chapter 5 Conclusions and perspectives ...................................... 123
List of publications ............................................................................... 127
Bibliography ......................................................... 129
Appendix ............................................................................................... 135
A. Materials related to the campaign of spectrum utilization measurements ................. 135
B. Materials related to measurements of the hybrid PLL ............................................... 138

tel-00597461, version 1 - 1 Jun 2011x


tel-00597461, version 1 - 1 Jun 2011