La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

Synthesis and application of chiral novel bis(isonitrile) ligands in catalysis [Elektronische Ressource] / vorgelegt von Anu Naik

De
255 pages
Synthesis and Application of Chiral Novel Bis(isonitrile) Ligands in Catalysis Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Anu Naik aus Himachal Pradesh (Indien) Regensburg 2010 Die Arbeit wurde angeleitet von: Prof. Dr. O. Reiser Promotionsgesuch eingereicht am: 10 März, 2010 Promotionskolloquium am: 30 März, 2010 Prüfungsausschuss: Vorsitz: Prof. Dr. Jens Schlossmann 1. Gutachter: Prof. Dr. Oliver Reiser 2. Gutachter: Prof. Dr. Burkhard König 3. Prüfer: Prof. Dr. Manfred Scheer Der experimentelle Teil der vorliegenden Arbeit wurde unter der Leitung von Herrn Prof. Dr. Oliver Reiser in der Zeit von September 2006 bis Dezember 2009 am Institut für Organische Chemie der Universität Regensburg, Regensburg, Germany. Herrn Prof. Dr. Oliver Reiser möchte ich herzlich für die Überlassung des äußerst interessanten Themas, die anregenden Diskussionen und seine stete Unterstützung während der Durchführung dieser Arbeit danken. To my Family Table of Contents Table of Contents Chapter A. Introduction 1. Organometallic chemistry 1 2.
Voir plus Voir moins

Synthesis and Application of Chiral Novel
Bis(isonitrile) Ligands in Catalysis

Dissertation


zur Erlangung des Doktorgrades der Naturwissenschaften
Dr. rer. nat.

an der Fakultät für Chemie und Pharmazie
der Universität Regensburg



vorgelegt von

Anu Naik
aus
Himachal Pradesh (Indien)

Regensburg 2010



























Die Arbeit wurde angeleitet von: Prof. Dr. O. Reiser


Promotionsgesuch eingereicht am: 10 März, 2010


Promotionskolloquium am: 30 März, 2010


Prüfungsausschuss: Vorsitz: Prof. Dr. Jens Schlossmann
1. Gutachter: Prof. Dr. Oliver Reiser
2. Gutachter: Prof. Dr. Burkhard König
3. Prüfer: Prof. Dr. Manfred Scheer

Der experimentelle Teil der vorliegenden Arbeit wurde unter der Leitung von Herrn Prof. Dr.
Oliver Reiser in der Zeit von September 2006 bis Dezember 2009 am Institut für Organische
Chemie der Universität Regensburg, Regensburg, Germany.


























Herrn Prof. Dr. Oliver Reiser möchte ich herzlich für die Überlassung des äußerst
interessanten Themas, die anregenden Diskussionen und seine stete Unterstützung während
der Durchführung dieser Arbeit danken.












To my Family
Table of Contents

Table of Contents

Chapter A. Introduction
1. Organometallic chemistry 1
2. Palladium-isonitrile complexes
2.1. Bissilylation of unsaturated C-C bonds 5
2.2. Suzuki Miyaura coupling 11
2.3. Bis-stannylation of alkynes 12
3. Low valent transition metal isonitrile complexes (M = W, Mo, Ni)
3.1. Hydrostannylation and bisstannnylation of alkynes 12
3.2. Polymerization reactions 14
3.3. Cyclopropanation of olefins 15
3.4. Allylic allylation 16
4. Rhodium, Ruthenium and Rhenium isonitrile complexes
4.1. Hydrogenation 17
4.2. Hydrosilylation 19
5. Copper isonitrile complexes
5.1. Esterification of carboxylic acid and cyclopropanation 22
6. Conclusion 23
8. References 24

Chapter B. Synthesis of Bis(isonitrile) (BINC) Ligands
1. Introduction 27
2. Synthesis of Bis(isonitrile) Ligands
2.1. Bis(isonitrile) Ligands derived from amino alcohol 31
2.2. 1,1’-binaphthyls and H -1,1’-binaphthyl based bis(isonitrile) ligands 37 8
2.3. Carbohydrate based bis(isonitrile) ligands 40
3. Conclusion 43
4. References 44

Table of Contents

Chapter C. Synthesis and Application of Pd (II)-bis(isonitrile) catalysts
1. Introduction 47
2. Synthesis of [PdCl(BINC)] complexes 48 2
3. Suzuki Miyaura coupling 50
4. Aerobic Wacker oxidation 53
5. Conclusion 60
6. References

Chapter D. Iron (II)-bis(isonitrile) Catalyzed Asymmetric Transfer
Hydrogenation
1. Introduction 62
2. Asymmetric Transfer Hydrogenation 63
3. Iron(II)-bis(isonitrile) complexes
3.1. Synthesis 72
3.2. Transfer Hydrogenation of Aromatic Ketones 75
3.3. Transfer Hydrogenation of Heteroaromatic and Pyridyl Ketones 79
3.4. Proposed Mechanism 82
4. Conclusion 85
5. References 85

Chapter E. Cu(I), Rh(I) and Ir(I)-bis(isonitrile) complexes
1. Cyclopropanation
1.1. Cu(I)-bis(isonitrile) complexes catalyzed cyclopropanation 88
2. Imine hydrogenation
2.1. Rh(I) and Ir(I)-bis(isonitrile) complexes catalyzed imine hydrogenation 90
3. Conclusion 92
4. References

Chapter F. Summary 94

Chapter G. Experimental data 97
Table of Contents

Chapter H. Appendix
1 13 311. H NMR, C NMR, DEPT-135 and PNMR spectra 158
2. X-ray diffraction structure 235
3. Acknowledgements 241

Abbreviations

Abbreviations

Atm. atmosphere
BArF tetrakis(3,5-trifluoromethyl-phenyl) borate
BINAM 1,1’-bi-2-naphthylamine
H-BINAM 5,5’,6,6’,7,7’,8,8’-octahydro- 1,1’- binaphthyl-2,2’-diamine 8
Bn benzyl
COD 1,5-cyclooctadiene
DABCO 1,4-diazabicyclo[2.2.2]octane
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone
DMF-DMA N,N-dimethylformamide dimethylacetal
dppf diphenylphosphino ferrocene
ee enantioselectivity
GC gas chromatography
h hour
HMDS 1,1,1,3,3,3-Hexamethyldisilazan
HPLC high performance liquid chromatography
IR infrared spectroscopy
LDA lithium diisopropylamide
LHDMS lithium-bis(trimethylsilyl)amide
m- meta
MCR multicomponent reaction
min. minute
MS molecular sieves, mass spectroscopy
mCPBA 3-chloroperoxybenzoic acid
Abbreviations

MPV Meerwein- Ponndorf-Verley
NADH Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NBS N-bromosuccinimide
n.d. not determined
NHC N-heterocyclic carbene
NMR nuclear magnetic resonance
n.r. no reaction
o- ortho
p- para
quant. quantitative
rt room temperature
sat. saturated
temp. temperature
TOF turnover frequency
THP tetrahydropyran
TBHP tert-butylhydroperoxide
TLC thin layer chromatography
U-4CR Ugi-four component reaction
1
Introduction 
 

A. Introduction

1. Organometallic Chemistry

Metal complexes are essential instruments in the toolbox of organic chemists, which are
studied under the roof of organometallic chemistry. Organometallic chemistry lies at the
interface between organic and inorganic chemistry because it deals with the interaction
1between inorganic metal ions and organic molecules. This field has provided some powerful
new synthetic methods in organic chemistry. The fastest growing area of organic chemistry is
the application of organometallic reagents and catalysts to synthetic problems.
Organometallic catalysts have long been used in industrial processes but are now being
routinely applied in organic synthetic problems as well. With the continuing rise in
environmental concerns and green chemistry, pressure has grown to maximize the ratio of
product to waste. This has, in turn, led to an increasing interest in catalytic reactions, where
the metal catalyst is present in minimal quantity and the selectivity of the reaction is
enhanced, so the waste product is minimized. Much of the interests in organometallic
compounds have been due to their efficiency as catalysts for organic synthesis.












Figure 1: Basic structure of an organometallic compound

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin