La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Partagez cette publication

Synthesis of Cyanuric Acid and Hamilton Receptor
Functionalized Tetraphenylporphyrins:
Investigation on the Chiroptical and Photophysical Properties of
their Self-assembled Superstructures with Depsipeptide and
Fullerene Dendrimers

Den Naturwissenschaftlichen Fakultäten der Friedrich-
Alexander-Universität Erlangen-Nürnberg


Erlangung des Doktorgrades

vorgelegt von

Katja Maurer-Chronakis
aus Nürnberg

Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der
Friedrich-Alexander Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 19.11.2010

Vorsitzender der Promotionskomission: Prof. Dr. R. Fink
Erstberichterstatter: Prof. Dr. A. Hirsch
Zweitberichterstatter: W. Bauer
Meinem Doktorvater, Prof. Dr. A. Hirsch, gilt mein besonderer Dank für sein reges
Interesse am Fortgang dieser Arbeit sowie für seine Anregungen und die
Diskussionen mit ihm.

Die vorliegende Arbeit entstand in der Zeit von Oktober 2004 bis Juni 2010 am
Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-

Meiner Familie

„Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt”
Albert Einstein


1.1 Supramolecular Chemistry-Principles and History 1
1.1.1 The History and Applications of the Hamilton Receptor
Bonding Motif 2
1.2 Non-covalent Supramolecular Porphyrin Assemblies 10
1.2.1 Synthetic Systems Mimicking Photosynthesis 11
1.2.2 Sensing of Chirality 18



3.1 Synthesis of the Hamilton Receptor Derivatives 23
3.2 Synthesis of the Porphyrin Precursors 24
3.3 Synthesis and Characterization of the Porphyrin Derivatives 25
3.3.1 Synthesis of the Porphyrin Derivatives 25
3.3.2 Synthesis and Characterization of the Zinc-porphyrins 31
3.4 Synthesis and Characterization of the Zinc Porphyrins Bearing
Hamilton Receptor or Cyanuric Acid Functionalities 40
3.4.1 Synthesis of a Four-fold Hamilton Receptor Functionalized
Porphyrin via an Esterification Reaction 40
3.4.2 Synthesis of the Trans- and Cis-configured Zinc Porphyrins
Bearing Hamilton Receptor or Cyanuric Acid Functionalities 45
3.4.3 Synthesis of a Four-fold Hamilton Receptor Functionalized
Porphyrin via the SONOGASHIRA C-C Coupling Reaction 58
3.4.4 Synthesis of a Four-fold Cyanuric Acid Functionalized 61
3.5 Supramolecular Chiral Porphyrin Dendrimers Based on the
Hamilton Receptor Bonding Motif 64
3.6 Synthesis and Photophysical Properties of Novel Supramolecular
Porphyrin-Fullerene Dendrimers 86



6.1 Instruments and Methods 101
6.2 Chemicals 102
6.3 Experimental Details 102

Index of Abbreviations

AcOH Acetic acid
AFM Atomic Force Microscopy
BF •OEt Boron trifluoride diethyl etherate 3 2
br Broad singlet
CS Carbon disulfide 2
CBZ Benzyloxycarbonyl
COSY Correlated Spectroscopy
d doublet
dd doublet
CD Circular Dichroism
CH Cl Dichloromethane 2 2
CHCl Chloroform 3
CT Charge Transfer
DCC N,N-dicyclohexylcarbodiimide
DCU Dicyclohexylurea
DCTB Trans-2-[3-(4-tert-butylphenyl)2-methyl-2-
DDQ 2,3-Dichloro-5,6-dicyano-p-benzoquinone
DHTB 2,5-Dihydroxy-benzoic acid
DIT Dithranol
DMAP 4-(Dimethylamino)pyridine
DMF Dimethylformamide
DMSO Dimethylsulfoxide
EA Elemental analysis
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
EtOAc Ethyl acetate
EtOH Ethanol
equiv. Equivalent
FAB Fast Atom Bombardment
GPC Gel Permeation Chromatography
h hour
HETCOR Heteronuclear Correlated Spectroscopy
HPLC High Performance Liquid Chromatography
IR Infrared Spectroscopy
IPCE Incident Photon to Converted Electron Efficiency
ITO Indium Tin Oxide
m multiplet
MALDI Matrix Assisted Laser Desorption Ionization
MeOH Methanol
MS Mass Spectrometry
NBA 3-Nitro-benzylalcohol
NEt Triethylamine 3
NMR Nuclear Magnetic Resonance
ODCB ortho-Dichlorbenzene
PFG Pulsed Field Gradient
ppm Parts per million
POPAM Poly-(propyleneamine)
s singlet
SIN Sinapinic acid
SOCl Thionyl chloride 2
t triplet
TFA Trifluoroacetic acid
THF Tetrahydrofuran
TLC Thin Layer Chromatography
TPP Tetraphenylporphyrin
UV/Vis Ultraviolet/Visible Spectroscopy
Zn Zinc


1.1. Supramolecular Chemistry - Principles and History

[1,2] Supramolecular chemistry is often termed as “the chemistry beyond the
[3]molecule” and describes the spontaneous self aggregation (self-assembly) between
molecules and/or ions by non-covalent bonding interactions. These interactions
include electrostatic Coulomb or donor-acceptor interactions, van der Waals forces,
hydrophobic forces, π- π-interactions and hydrogen bonding. Dynamic covalent
chemistry, representing an important part of supramolecular chemistry, becomes
relevant if the supramolecular structure is stabilized through the formation of
[4]reversible covalent bonding interactions under conditions of equilibrium control. On
the contrary, in terms of non-covalent supramolecular chemistry the formation of the
thermodynamically most stable supramolecular structure is favored. However, the
dynamic character of these systems is reflected in the continuous self-assembly and
disassembly processes and therefore, the entire supramolecular aggregate exhibits
beneficial abilities like self-repair or ligand exchange reactions. Furthermore, the
relatively easy synthesis and purification of the monomeric building blocks compared
to their corresponding supramolecular self-aggregates display additional advantages.
On the other hand, the non-covalent supramolecular approach demands a very
careful design of the monomeric building blocks to ensure the self-assembly into a
specific, desired supramolecular aggregate. Generally, this can be achieved by a fine
tuning of the geometrical requirements of the host and guest molecules and/or by
equipping the monomers with specific non-covalent binding sites following the
molecular recognition principle. The latter was first introduced as the “lock and key”
principle for the specific interactions between enzymes and substrates by Nobel
[5]laureate HERMANN EMIL FISCHER, in 1894. In 1967, the molecular recognition
principle was successfully introduced for the template directed synthesis of crown
[6]ethers by CHARLES JOHN PEDERSEN. The following years, investigations on the
[7,8,9]selective binding of alkali metals in cryptands were published and further
development of the molecular recognition principle led to the establishment of host-
[10] guest chemistry by DONALD JAMES CRAM. In 1978, the term “Supramolecular
[11] Chemistry” was introduced by JEAN-MARIE LEHN and for their valuable contribution

in this area, CRAM, LEHN and PEDERSEN were awarded the Nobel Prize in chemistry
in 1987.

Figure 1: Noncovalent self-assembly between calix[4]arene dimelamine molecules and
[12]cyanuric acid derivatives.

1.1.1. The History and Applications of the Hamilton Receptor Bonding

The great importance of hydrogen bonding in nature is clearly demonstrated in the
diversity of biological supramolecular assemblies based upon these interactions, e.g.
the highly specific association of the corresponding nucleobases in the double helix
[13,14]structures of DNA and RNA. As illustrated in Figure 2b, the double helix of DNA
is stabilized via hydrogen bonding interactions between the two strands realized by
complementary pairing between adenine-thymine and guanine-cytosine bases.

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin