Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Technological Change and Energy - An Empirical Assessment of Innovation and Adoption [Elektronische Ressource] / Frauke Gabriele Braun. Betreuer: Christian von Hirschhausen

De
157 pages
Technische Universit at BerlinSchool VII Economics and ManagementTechnological Change and Energy { An EmpiricalAssessment of Innovation and Adoptionvorgelegt vonDiplom-VolkswirtinFrauke Gabriele BraunVon der Fakult at VII { Wirtschaft und Managementder Technischen Universit at Berlinzur Erlangung des akademischen GradesDoktor der Wirtschaftswissenschaften{ Dr. rer. oec. {genehmigte DissertationPromotionsausschuss:Vorsitzender: Prof. Dr. Knut BlindBerichter: Prof. Dr. Christian von HirschhausenBerichter: Prof. Dr. Claudia KemfertTag der wissenschaftlichen Aussprache: 13. Dezember 2010Berlin 2011D83AbstractThe global energy system is at a crossroads. Central challenges are curbing green-house gas emissions, maintaining security of supply, and fostering competitive markets.Technological change will be a crucial facilitator for achieving a low carbon, sustainable,secure, and competitive energy system in the future. Accelerating green, climate friendlytechnological change is therefore ranking high on the policy agenda of many countries.We use empirical/econometric methods to analyse the role of technological progress wi-thin the energy-technology-economy nexus. The objective consists in identifying andexploring determinants of the technological change process in green, climate friendlytechnologies.
Voir plus Voir moins

Technische Universit at Berlin
School VII Economics and Management
Technological Change and Energy { An Empirical
Assessment of Innovation and Adoption
vorgelegt von
Diplom-Volkswirtin
Frauke Gabriele Braun
Von der Fakult at VII { Wirtschaft und Management
der Technischen Universit at Berlin
zur Erlangung des akademischen Grades
Doktor der Wirtschaftswissenschaften
{ Dr. rer. oec. {
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender: Prof. Dr. Knut Blind
Berichter: Prof. Dr. Christian von Hirschhausen
Berichter: Prof. Dr. Claudia Kemfert
Tag der wissenschaftlichen Aussprache: 13. Dezember 2010
Berlin 2011
D83Abstract
The global energy system is at a crossroads. Central challenges are curbing green-
house gas emissions, maintaining security of supply, and fostering competitive markets.
Technological change will be a crucial facilitator for achieving a low carbon, sustainable,
secure, and competitive energy system in the future. Accelerating green, climate friendly
technological change is therefore ranking high on the policy agenda of many countries.
We use empirical/econometric methods to analyse the role of technological progress wi-
thin the energy-technology-economy nexus. The objective consists in identifying and
exploring determinants of the technological change process in green, climate friendly
technologies. The analyses cover two aspects of technological change: the creation of
new ideas and advances in the eld of energy technologies (innovation), as well as the
adoption and use of technologies. The studies on the driving forces of innovation focus on
renewable energy technologies. The empirical models assess the importance of knowledge
spillovers in the innovation process of renewable energy technologies. We further devise
an approach to identify and retrieve concentrating solar power technologies from patent
data which is used to study innovative activity in this eld. The adoption of technologies
is studied in the context of space heating in the residential sector. The results outline
the importance of socio-economic characteristics in the selection of energy technologies
by households. In a comparative study on Italian and German households, technology
selection and energy demand could be shown to be mostly in uenced by similar factors,
in particular socio-economic characteristics, in these two countries.
Keywords: technological change, panel data models, innovation, renewable energy, micro
data models, adoption, space heating, climate change.Zusammenfassung
Das weltweite Energiesystem steht vor gro en Herausforderungen. Wichtige Pruf steine
in diesem Zusammenhang sind eine Reduzierung der Treibhausgasemissionen sowie die
Gew ahrleistung der Energiesicherheit und des Wettbewerbs auf den M arkten. In der Au-
seinandersetzung mit diesen Herausforderungen kommt dem technologischen Fortschritt
eine entscheidende Rolle zu. Die F orderung eines klimafreundlichen und nachhaltigen
grunen \ technologischen Fortschritts ist eine zentrale Zielstellung in der Politik ver-
"
schiedener L ander. Die Analysen verwenden empirische Methoden, um die Rolle des
technologischen Fortschritts im Nexus aus Energie, Technologie und Okonomie n aher
zu ergrunden. Ziel dieser Arbeit ist es, die entscheidenden Bestimmungsfaktoren eines
grunen, klimafreundlichen\ technologischen Wandels zu identi zieren und in ihrer Wir-
"
kung zu analysieren. Die Auswertungen setzten sich mit zwei unterschiedlichen Phasen
oder Stufen des Prozesses des technischen Fortschritts auseinander. Zum einen mit der
Innovation, der Entstehung neuen Wissens und Entwicklung neuer Technologien, zum
anderen mit der Adoption, der Ubernahme und Anwendung von Technologien durch End-
nutzer. Der Themenkomplex Innovation wird hierbei fur den Bereich der Technologien
zur Nutzung erneuerbarer Energien analysiert. Die Ergebnisse untermauern die Bedeu-
tung von Wissenstransfer, so genanntem knowledge spillover\, im Innovationsprozess
"
der erneuerbaren Energietechnologien. Des weiteren wird ein Ansatz entwickelt und aus-
gearbeitet, um solarthermische Technologien zur Elektrizit atserzeugung ( Concentrating
"
solar power\) in Patentdatens atzen zu identi zieren und die gewonnen Daten zur Ana-
lyse der Innovation in diesem Bereich zu nutzen. Die Adoption von Technologien wird im
Zusammenhang mit Anlagen zur Erzeugung von Raumw arme im Haushaltsbereich un-
tersucht. Die Ergebnisse verdeutlichen, dass sozio okonomische Faktoren einen wichtigen
Ein uss auf die Wahl von Heizungstechnologien nehmen. In einer vergleichenden Studie
fur Italien und Deutschland konnten ah nlich gelagerte E ekte auch fur die Technologiea-
doption und Energienachfrage der Haushalte in beiden L andern best atigt werden.
Schlusselw orter: Technologischer Wandel, Paneldaten Modelle, Innovation, erneuerbare
Energie, Mikrodaten Modelle, Adoption, Raumheizung, Klimawandel.Acknowledgements
I owe a debt of gratitude to the many people who have made this dissertation possible.
First and foremost, I sincerely would like to thank my supervisors Claudia Kemfert,
Georg Meran, and Christian von Hirschhausen for their manifold support and encoura-
gement throughout all stages of my doctoral work. They guided me through the process
and provided insightful comments and advice that strongly in uenced the development
of my research.
All sections of this thesis have greatly bene ted from the comments of many scho-
lars, referees, and conference participants. I am particularly indebted to my co-authors
for substantial discussions and opportunities to exchange ideas. I would also like to
express my gratitude to Georg Meran for his commitment to the doctoral students at
the DIW Berlin Graduate Center. The Graduate Center has been a fruitful community
for support and exchange. I have especially appreciated the discussions and ongoing
collaboration with fellow DIW researchers, particularly in the Energy, Transportation,
and Environment and Innovation, Manufacturing, and Service departments.
In my nal year, I had the opportunity to spend three months as a visiting researcher
at the Electricity Policy Research Group (EPRG) at Cambridge University. I am espe-
cially grateful to the researchers and doctoral students at EPRG, in particular Tooraj
Jamasb, not only for their hospitality but also for the academic climate and conversa-
tions on the subject. My time at Cambridge University has proved a greatly valuable
experience for my dissertation and ongoing research. I would also like to express my gra-
titude to my alma mater, the Eberhard Karls Universit at Tubingen. It introduced me
to the concepts of economics and sparked my interest in conducting academic research.
Its university motto \Attempto" has become a recurrent motivation for my work.
My sincere thanks go to my friends for their friendship and encouragement in good
and challenging times. Finally, I owe immeasurable thanks to my family and partner for
their continuous support and encouragement. Without them, this challenging journey
would not have been possible.
Frauke Gabriele Braun,
November 2010Contents
Abstract ii
Table of Contents v
List of Tables viii
List of Figures x
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The economics of green technological change and climate change . . . . . 3
1.2.1 Survey of issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Empirical evidence: Market factors and green, climate friendly
technological change . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Theoretical foundation: Externalities and the case for policy action . . . . 8
1.3.1 The problem of multiple externalities . . . . . . . . . . . . . . . . . 8
1.3.2 Empirical insights on the externality problems . . . . . . . . . . . 10
1.3.3 Theoretical evidence on policy instruments and green, climate
friendly technological change . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Empirical evidence on policy instruments and green, climate friendly
technological change . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Overview of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Technology innovation { Chapter 2 and Chapter 3 . . . . . . . . . 17
1.4.1.1 Chapter 2: Which Giant’s Shoulders Matter? Empiri-
cal Evidence on Innovative Activity in Wind and Solar
Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1.2 Chapter 3: Holding a Candle to Innovation in Concen-
trating Solar Power Technologies: A Study Drawing on
Patent Data . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Technology adoption { Chapter 4 and Chapter 5 . . . . . . . . . . 20
1.4.2.1 Chapter 4: Determinants of Households’ Space Heating
Type: A Discrete Choice Analysis for German Households 21
vCONTENTS
1.4.2.2 Chapter 5: Household Energy Consumption in Europe:
Empirical Results from German and Italian Household
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Concluding remarks and outlook . . . . . . . . . . . . . . . . . . . . . . . 23
2 Which Giant’s Shoulders Matter? Empirical Evidence on Innovative
Activity in Wind and Solar Technology 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Data and descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Usage of patent data . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Other explanatory variables . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 A rst look at the data . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 An empirical model of innovative activity in renewable energy technologies 33
2.3.1 A knowledge production function framework . . . . . . . . . . . . 33
2.3.2 Econometric approach . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Empirical ndings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Determinants of innovative activity { the case of wind . . . . . . . 36
2.4.2ts of innovative activity { the case of solar . . . . . . . 39
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.A Appendix { Calculation of the spillover variables . . . . . . . . . . . . . . 44
3 Holding a Candle to Innovation in Concentrating Solar Power Techno-
logies: A Study Drawing on Patent Data 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Technology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Patents as indicators of innovation in CSP . . . . . . . . . . . . . . . . . . 51
3.3.1 Patent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Patent search strategy and classi cation . . . . . . . . . . . . . . . 53
3.4 Public R&D support for CSP . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Innovation activity in CSP technologies . . . . . . . . . . . . . . . . . . . 59
3.5.1 Innovation activity at the EPO { an international perspective . . . 59
3.5.1.1 Global trends at the EPO . . . . . . . . . . . . . . . . . . 59
3.5.1.2 Innovation activity according to the narrow de nition of
CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1.3 Innovation activity according to the broad de nition of
CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Innovation activity at the USPTO { a glance at a dynamic home
market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2.1 Global trends at the USPTO . . . . . . . . . . . . . . . . 66
3.5.2.2 Innovation activity according to the narrow de nition of
CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
viCONTENTS
3.5.2.3 Innovation activity according to the broad de nition of
CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 The dimensions of the supplying industry . . . . . . . . . . . . . . . . . . 71
3.6.1 Installed CSP capacity . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Implications of the industry structure . . . . . . . . . . . . . . . . 74
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.A Appendix { Innovation activity at the JPO . . . . . . . . . . . . . . . . . 77
4 Determinants of Households’ Space Heating Type: A Discrete Choice
Analysis for German Households 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Model and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Results for sample with house owners . . . . . . . . . . . . . . . . 89
4.4.2 for sample with owners and renters . . . . . . . . . . . . . 93
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.A Appendix { Supplementary material . . . . . . . . . . . . . . . . . . . . . 99
5 Household Energy Consumption in Europe: Empirical Results from
German and Italian Household Data 102
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Model and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2.1 Data for Germany . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2.2 Data for Italy . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.1 Results for German households . . . . . . . . . . . . . . . . . . . . 118
5.4.1.1 Heating system choice . . . . . . . . . . . . . . . . . . . . 118
5.4.1.2 Demand for oil and gas . . . . . . . . . . . . . . . . . . . 120
5.4.2 Results for Italian households . . . . . . . . . . . . . . . . . . . . . 124
5.4.2.1 Heating system choice . . . . . . . . . . . . . . . . . . . . 124
5.4.2.2 Demand for gas . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Summary and comparison of the evidence . . . . . . . . . . . . . . 128
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliography 132
viiList of Tables
1.1 Overview and summary of chapters . . . . . . . . . . . . . . . . . . . . . . 18
2.1 Variable description and summary statistics wind technology . . . . . . . 29
2.2 Variable and solar tec . . . . . . . 31
2.3 Determinants of innovative activity in wind technology . . . . . . . . . . . 37
2.4ts of innovative activity in solar technology . . . . . . . . . . . 41
2.5 De nition related wind technology . . . . . . . . . . . . . . . . . . . . . . 45
2.6 related solar tec . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Example of an IPC code associated with CSP . . . . . . . . . . . . . . . . 54
3.2 CSP and corresponding IPC patent classi cation { broad and narrow
de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Operational CSP plants in 2009 . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Firm activity in value chain for CSP . . . . . . . . . . . . . . . . . . . . . 74
4.1 Variable descriptions and summary statistics; sample of house owners . . 86
4.2 Marginal e ects on probability heating type; sample of house owners . . . 91
4.3 e ects ony heating type; sample with all households . 94
4.4 Variable descriptions and summary statistics; sample with all . 99
4.5 Multinomial logit estimates for probability heating type; sample of house
owners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Multinomial logit estimates for probability of heating type; sample with
all households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Variable descriptions and summary statistics for German households . . . 113
5.2 Variable and for Italian . . . . 117
5.3 Marginal e ects, heating system choice Germany . . . . . . . . . . . . . . 119
5.4 Demand estimates for heating end use { Germany and Italy . . . . . . . . 123
5.5 Marginal e ects, heating system choice Italy . . . . . . . . . . . . . . . . . 125
viiiList of Figures
2.1 Innovative activity in green energy technologies; EPO patent applications 32
2.2 Innovative activity in green energy technologies by leading inventor coun-
tries; EPO patent applications . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Global cumulative installed capacity, CSP . . . . . . . . . . . . . . . . . . 49
3.2 Diagram of CSP technologies . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Scheme to identify international patent classes (IPC) associated with CSP 55
3.4 Annual public R&D expenditure for CSP by country, 1974{2008 . . . . . 58
3.5 Share of public CSP R&D to public R&D expenditure for all solar tech-
nologies by country, 1974{2008 . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Comparison total to CSP patent applications at the EPO . . . . . . . . . 61
3.7 CSP patent applications at the EPO by leading countries; CSP { narrow
de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Total CSP patent applications at the EPO by countries of origin; CSP {
narrow de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 CSP patent applications at the EPO by leading countries; CSP { broad
de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Total CSP patent applications at the EPO by countries of origin; CSP {
broad de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.11 Comparison total to CSP patent applications at the USPTO . . . . . . . 67
3.12 CSP patent applications at the USPTO by leading countries; CSP { nar-
row de

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin