La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

The carbon speciation in the Earth’s interior as function of pressure, temperature and oxygen fugacity [Elektronische Ressource] / Vincenzo Stagno. Betreuer: David C. Rubie

De
192 pages
The carbon speciation in the Earth’s interior as function of pressure, temperature and oxygen fugacity Dissertation Fakultät für Biologie, Chemie und Geowissenschaften Universität Bayreuth Vincenzo Stagno (Diplom-Geologe) aus Palermo (Italien) Bayreuth, 2011 Die vorliegende Arbeit wurde von Oktober 2007 bis Februar 2011 am Bayerischen Geoinstitut, Universität Bayreuth unter Leitung von Dr. D.J. Frost and Prof. D.C. Rubie angefertigt. Datum der Einreichung der Dissertation: 17 Februar, 2011 Datum des wissenschaftlichen Kolloquiums: 30 Mai, 2011 Prüfungssausschuß: Prof. J. Senker, Universität Bayreuth (Vorsitzender) Prof. D.C. Rubie, Universität Bayreuth (Erster Gutachter) Prof. A. Woodland, Universität Frankfurt am Main (Zweiter Gutachter) Prof. L. Dubrovinsky, Universität Bayreuth Prof. L. Zöller, Universität Bayreuth Contents Abstract p. 1 Zusammenfassung 3 1. Introduction 6 1.1 Carbon in the Earth’s mantle 6 1.2 Estimates of carbon abundance in the Earth’s mantle and the global carbon content 10 1.3 The stability of carbonate minerals and melts and the solubility of CO in natural magmas 13 2 1.4 Oxygen fugacity in the Earth’ s interior 20 1.5 The speciation of carbon as a function of redox state 26 1.6 Aims of this study 30 2. Methods 32 2.
Voir plus Voir moins

The carbon speciation in the Earth’s
interior as function of pressure,
temperature and oxygen fugacity


Dissertation




Fakultät für Biologie, Chemie und Geowissenschaften
Universität Bayreuth







Vincenzo Stagno
(Diplom-Geologe)
aus Palermo (Italien)






Bayreuth, 2011


Die vorliegende Arbeit wurde von Oktober 2007 bis Februar 2011 am Bayerischen
Geoinstitut, Universität Bayreuth unter Leitung von Dr. D.J. Frost and Prof. D.C. Rubie
angefertigt.


Datum der Einreichung der Dissertation: 17 Februar, 2011

Datum des wissenschaftlichen Kolloquiums: 30 Mai, 2011





Prüfungssausschuß:
Prof. J. Senker, Universität Bayreuth (Vorsitzender)
Prof. D.C. Rubie, Universität Bayreuth (Erster Gutachter)
Prof. A. Woodland, Universität Frankfurt am Main (Zweiter Gutachter)
Prof. L. Dubrovinsky, Universität Bayreuth
Prof. L. Zöller, Universität Bayreuth Contents

Abstract p. 1
Zusammenfassung 3
1. Introduction 6
1.1 Carbon in the Earth’s mantle 6
1.2 Estimates of carbon abundance in the Earth’s mantle and the
global carbon content 10
1.3 The stability of carbonate minerals and melts and the solubility
of CO in natural magmas 13 2
1.4 Oxygen fugacity in the Earth’ s interior 20
1.5 The speciation of carbon as a function of redox state 26
1.6 Aims of this study 30

2. Methods 32
2.1 High pressure experiments 32
2.2 Analytical techniques 38
2.2.1 Electron microprobe analysis 38
2.2.2 Scanning electron microscopy 39
2.2.3 Raman spectroscopy 40
2.2.4 Mössbauer spectroscopy 41
2.2.5 Focused Ion beam 4
2.2.6 Electron Energy Loss Spectroscopy 46
2.3 Control of the oxygen fugacity during experiments 48


3. Carbon speciation in the asthenosphere: experimental measurements of the
redox conditions at which carbonate-bearing melts coexist with graphite or
diamond in peridotite assemblage 51
3.1 Introduction 51
3.2 Experimental techniques 54
3.3 Results 60
I 3.3.1 Phase relations and compositions 60
3.3.2 Determination of oxygen fugacity 63
3.3.3 Oxygen fugacity dependences 68
3.4 Discussion 72
3.4.1 Parameterisation of the carbon/carbonate-melts fo as a function of 2
P, T and CO melt content 72 2
3.4.2 Carbon speciation with respect to the mantle redox state and the onset of
redox melting 74
3.5 Conclusions 80

4. Carbon/ carbonate equilibrium in the transition zone and lower mantle 82
4.1 Introduction 82
4.2 Experimental methods 84
4.3 Results 88
4.4 Discussion and conclusions 96

3+5. Fe /Fe measurements of garnets equilibrated with carbon and carbonate tot
in a peridotite assemblage 101
5.1 Introduction 101
5.2 Experimental methods 103
5.3 Results 108
5.3.1 Phase compositions and attainment of divalent cation equilibrium 108
5.3.2 Oxygen fugacity measurements employing iridium as redox sensor 113
5.3.3 Ferric iron measurements and attainment of redox equilibrium 114
5.4 Oxygen-thermobarometry measurements on the experimental garnet
peridotite assemblages 119
5.5 Discussion 122
5.5.1 Parameterisation of logK as a function of pressure and temperature 122
5.5.2 The redox profile of the upper mantle revisited 125
5.6 Conclusions 128


II6. Carbon and carbonate equilibrium in eclogitic assemblage:
preliminary results 129
6.1 Introduction 129
6.2 Experimental methods 135
6.3 Results 137
6.4 Oxygen fugacity determination 140
6.5 Discussion 143
6.6 Conclusions 146

7. General conclusions 147
7.1 The oxidation of elemental carbon to carbonate beneath
mid-ocean ridges 147
7.2 Magnesite as a deep carbon source 150
7.3 Further work 151

Acknowledgements 153
References 154
Appendix 169












IIIAbstract

The redox state of the Earth’s interior will influence the speciation of volatile elements both in the
mantle and in mantle derived magmas. Carbon is one of the principal elements to be affected in this
way because under reducing conditions it forms graphite or diamond, and under oxidizing conditions
carbonate (or CO -bearing) minerals and melts. The cycling and residence time of carbon in the mantle 2
can be strongly effected by the oxygen fugacity because reduced phases such as diamond and graphite
are immobile and likely to remain within the mantle and potentially within subducting slabs, while at
more oxidizing conditions CO -rich fluids or melts can migrate and escape from the interior. The 2
carbon cycle in the Earth may therefore depend on the redox state of mantle rocks. Conversely, an
influx of CO -rich fluids or melts may act to oxidize the mantle as an additional aspect of 2
metasomatism.
In the first part of this study experiments were performed to measure the oxygen fugacity at which
carbon (graphite or diamond) oxidises to carbonate minerals or melts within mantle peridotite
assemblages between 2.5 and 11 GPa at 1100-1600 °C. The experiments were performed up to
temperatures where carbonate melts evolve towards more silicate-rich compositions. The dilution of
the carbonate melt component was found to lower the relative fo , expanding the melt stability field 2
with respect to reduced carbon. The results allow the fo of the diamond formation process to be 2
determined both as a function of pressure, temperature and melt CO concentration. These results also 2
have implications for the onset of melting within up welling mantle material. Several studies have
indicated that the mantle may become more reduced with depth. This means that the oxidation of
elemental carbon (graphite or diamond) may occur in up welling rocks where the oxidized product is a
carbonate bearing magma. When the experimental data are compared with current estimates for the fo 2
of mantle rocks the implication is that peridotitic mantle will remain in the diamond stability field up to
3+at least 100-150 km depth. Only at depths shallower than 150 km would Fe in mantle silicates react
with graphite to produce carbonate rich melts in a redox melting process. Redox melting should limit
the depth interval over which carbonate-rich melts can form beneath ridges.
Further experiments were performed to determine the fo at which diamond oxidises to carbonate in 2
the transition zone and lower mantle. Experiments at 45 GPa were performed using the MADONNA
D-DIA (1500 tons) apparatus with sintered diamond anvils installed at the Geodynamics Research
Centre, Ehime University in Japan. The measured oxygen fugacity was found to be approximately 3
1log units above the iron-wüstite oxygen buffer ( ΔIW+3). As the oxygen fugacity of the transition zone
and lower mantle is most likely at or below the IW buffer this confines the stability of solid carbonate
to the upper mantle or to unusually oxidized regions of the deeper mantle. The oxygen fugacity at
which magnesite and diamond coexist showed a slight decrease with pressure, however, implying the
possibility that magnesite may become the stable host for carbon at the very base of the lower mantle.
The oxygen fugacity at which mantle xenoliths equilibrated can be determined using oxy-
thermobarometry equilibria. For garnet-peridotite rocks the only calibrated and tested oxy-barometer
employs the equilibrium,

3+2Fe Fe Si O = 4Fe SiO + 2FeSiO + O 3 2 3 12 2 4 3 2
Garnet Olivine Orthopyroxene

3+In the final section of this thesis Fe / ΣFe ratios of garnets produced in a peridotite assemblage in
equilibrium with carbon and carbonate melts were measured between 3 and 7 GPa. The oxygen
fugacity in these experiments was also constrained, which allowed a test of this widely used oxy-
barometer to be made at pressures much higher than previously performed. The results indicate that the
pressure dependence of this oxy-barometer may be in error and a preliminary recalibration implies that
cratonic lithosphere may not be as reduced as previously considered.













2Zusammenfassung

Der Redoxzustand im Inneren der Erde beeinflusst das Auftreten unterschiedlicher chemischer Spezies
der volatilen Elemente sowohl im Erdmantel als auch in Magmen, die sich im Erdmantel bilden.
Kohlenstoff ist eines der wichtigsten Elemente, das auf diese Art beeinflusst wird, da es unter
reduzierenden Bedingungen Graphit oder Diamant bildet, unter oxidierenden Bedingungen dagegen
Karbonat- (oder CO enthaltende) Minerale oder Schmelzen. Der Kreislauf und die Verweildauer von 2
Kohlenstoff im Erdmantel kann durch die Sauerstofffugazität stark beeinflusst werden, da reduzierte
Phasen wie Diamant oder Graphit relativ immobil sind, so dass sie wahrscheinlich im Mantel und auch
möglicherweise in subduzierten Platten verbleiben, während unter mehr oxidierenden Bedingungen
CO -reiche Fluide oder Schmelzen migrieren und so aus dem Erdinneren entweichen können. Der 2
Kohlenstoffkreislauf in der Erde kann daher vom Redoxzustand der Mantelgesteine abhängen.
Umgekehrt kann eine Zufuhr von CO -reichen Fluiden oder Schmelzen den Mantel metasomatisch 2
oxidieren.
Im ersten Teil dieser Arbeit wurden Experimente durchgeführt, um die Sauerstofffugazität zu
bestimmen, bei der Kohlenstoff (Diamant oder Graphit) in Mantelperidotit-Zusammensetzungen bei
2.5 bis 11 GPa und 1100 bis 1600 °C zu Karbonat-Mineralen oder -Schmelzen oxidiert wird. Die
Experimente wurden bis zu den Temperaturen durchgeführt, bei denen die Karbonatschmelzen sich zu
mehr silikatischer Zusammensetzung hin entwickeln.
Die Verdünnung der Karbonatschmelzenkomponente führt zu einer Erniedrigung der relativen fo , und 2
erweitert dabei das Stabilitätsfeld der Schmelze im Verhältnis zum reduzierten Kohlenstoff. Die
Resultate erlauben, die fo der Diamantbildung als Funktion von Druck, Temperatur und CO -2 2
Konzentration in der Schmelze zu bestimmen. Diese Resultate haben auch Konsequenzen für das
Einsetzen der Schmelzbildung in aufsteigendem Mantelmaterial. Eine Reihe von vorhergehenden
Untersuchungen hat ergeben, dass im Erdmantel mit grösserer Tiefe mehr reduzierte Bedingungen
herrschen. Das bedeutet, dass die Oxidierung von elementarem Kohlenstoff (Graphit oder Diamant) in
aufsteigendem Mantelmaterial eintritt, wobei das Produkt der Oxidierung dann eine karbonathaltige
Schmelze ist. Beim Vergleich der experimentellen Daten dieser Arbeit mit den gegenwärtigen
Schätzungen der fo von Mantelgesteinen ergibt sich, dass sich der peridotitische Mantel ab mindestens 2
100 bis 150 km Tiefe im Diamantstabilitätsfeld befindet. Nur in Tiefen geringer als 150 km würde das
3+Fe in Mantelsilikaten mit Graphit reagieren, um in einem Redox-Schmelzprozess karbonatreiche
3Schmelzen zu produzieren. Redox-Schmelzbildung sollte auch das Tiefenintervall begrenzen, in dem
sich karbonatreiche Schmelzen unter mittelozeanischen Rücken bilden können.
Weitere Experimente wurden durchgeführt, um die fo zu bestimmen, bei der Diamant in der 2
Übergangszone und dem unteren Erdmantel zu Karbonat oxidiert. Experimente bei 45 GPa wurden an
der mit gesintertem Diamantstempeln ausgerüsteten MADONNA D-DIA (1500 Tonnen) Presse
durchgeführt, die im Geodynamics Research Center der Universität Ehime (Japan) installiert ist. Die in
diesen Experimenten bestimmte Sauerstofffugazität lag ungefähr drei logarithmische Einheiten über
der des Eisen-Wüstit-Puffers ( ΔIW+3). Da die Sauerstofffugazität der Übergangszone und des unteren
Mantels sehr wahrscheinlich im Bereich des IW Puffer liegt, begrenzt dies den Stabilitätsbereich von
festen Karbonaten auf den oberen Mantel oder ungewöhnlich hoch oxidierte Bereiche des tieferen
Mantels. Die Sauerstofffugazität, bei der Magnesit und Diamant koexistieren, zeigt dagegen eine
geringfügige Erniedrigung mit ansteigem Druck, was die Möglichkeit offen lässt, dass Magnesit das
stabile Wirtsmineral für Kohlenstoff an der Basis des unteren Erdmantels sein könnte.
Die Sauerstofffugazität, bei der Mantelxenolithe equilibriert sind, kann durch
Oxythermobarometrie bestimmt werden. Für Granat-Peridotite lautet die einzige kalibrierte und
getestete oxybarometrische Gleichgewichtsreaktion:

3+2Fe Fe Si O = 4Fe SiO + 2FeSiO + O 3 2 3 12 2 4 3 2
Granat Olivin Orthopyroxen

3+Im letzten Teil dieser Arbeit wurden Fe / ΣFe Verhältnisse von Granaten gemessen, die bei 3 bis 7 GPa
in einer peridotitischen Zusammensetzung im Gleichgewicht mit Kohlenstoff und karbonatischen
Schmelzen gebildet wurden. Diese Experimente wurden unter kontrollierter Sauerstofffugazität
durchgeführt, so dass dieses oft genutzte Oxybarometer auch bei höheren Drücken als bisher getestet
werden konnte. Die Resultate zeigen, dass die bisher ermittelte Druckabhängigkeit dieses
Oxybarometers vermutlich nicht korrekt ist und eine vorläufige Rekalibrierung deutet an, dass die
kratonische Lithosphäre nicht so stark reduziert ist wie bisher angenommen.

4












































Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin