//img.uscri.be/pth/c74a990bb8031b652085da9cc338f8c7cf3a7bfe
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Tonalness and consonance of technical sounds [Elektronische Ressource] / Sebastián Fingerhuth

152 pages
Aachener Beiträge zur Technischen AkustikIn this work, the production and perception of noise from technicalequipment is presented. As a case study, the noise of switched reluctance SebastianFingerhuthmachines (SRM) was used. The principle of operation of SRM is presentedas well as the characterization of some noise problems of electrical machi-Tonalness and consonancenes.of technicalsoundsThe measurement results from the motor surface vibration and the directi-vity of the radiated sound from the machine are discussed and some noiseoptimized control strategy for a SRM are shown, with an example of what isachievable and which are the limitsof such strategy.The concepts of tonalness and consonance are defined and some theoriesbehind them are described. The results of exhaustive psychoacoustic liste-ning tests about the perceptual characteristics of the noise of a technicalsource are presented, analyzed and discussed.The main conclusions of the listening tests are:One important component of the perceived annoyance oftechnical sounds is the tonalness.Different tonalness calculation algorithms are in agreementwith the results from the listening tests.The consonance/dissonance of technical sounds depends onseveral parameters, i.e. roughness and frequency ratio.
Voir plus Voir moins

Aachener Beiträge zur
Technischen Akustik
In this work, the production and perception of noise from technical
equipment is presented. As a case study, the noise of switched reluctance SebastianFingerhuth
machines (SRM) was used. The principle of operation of SRM is presented
as well as the characterization of some noise problems of electrical machi-
Tonalness and consonance
nes.
of technicalsounds
The measurement results from the motor surface vibration and the directi-
vity of the radiated sound from the machine are discussed and some noise
optimized control strategy for a SRM are shown, with an example of what is
achievable and which are the limitsof such strategy.
The concepts of tonalness and consonance are defined and some theories
behind them are described. The results of exhaustive psychoacoustic liste-
ning tests about the perceptual characteristics of the noise of a technical
source are presented, analyzed and discussed.
The main conclusions of the listening tests are:
One important component of the perceived annoyance of
technical sounds is the tonalness.
Different tonalness calculation algorithms are in agreement
with the results from the listening tests.
The consonance/dissonance of technical sounds depends on
several parameters, i.e. roughness and frequency ratio.
λογος
ISSN 1866-3052
λογος
ISBN 978-3-8325-2458-6
LogosVerlag Berlin
S
e
b
a
s
t
i
a
n
F
i
n
g
e
r
h
u
t
h
T
o
n
a
l
n
e
s
s
a
n
d
c
o
n
s
o
n
a
n
c
e
o
f
t
e
c
h
n
i
c
a
l
s
o
u
n
d
s
B
a
n
d
1
0TONALNESS AND CONSONANCE OF TECHNICAL
SOUNDS
Von der Fakulät für Elektrotechnik und Informationstechnik der
Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN
genehmigte Dissertation
vorgelegt von
Ingeniero Civil Electricista (RCH)
Sebastián C. Fingerhuth
aus Puerto Ordaz, Venezuela
Berichter: Universitätsprofessor Dr. rer. nat. Michael Vorländer
Universitätsprofessor Dr. ir. Rik W. De Doncker
Tag der mündlichen Prüfung: 2. Dezember 2009
DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverfügbar.Sebastian Fingerhuth
Tonalness and consonance of technical sounds
Logos Verlag Berlin GmbH
λογοςAachener Beitra¨ge zur Technischen Akustik
Herausgeber:
Prof.Dr.rer.nat. Michael Vorla¨nder
Institut fu¨r Technische Akustik
RWTH Aachen
52056 Aachen
www.akustik.rwth-aachen.de
Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet u¨ber http://dnb.d-nb.de abrufbar.
Gedruckt mit Unterstu¨tzung des Deutschen Akademischen Austauschdienstes
Dissertation RWTH Aachen
D 82, 2009
c Copyright Logos Verlag Berlin GmbH 2010
Alle Rechte vorbehalten.
ISBN 978-3-8325-2458-6
ISSN 1866-3052
Band 10
Logos Verlag Berlin GmbH
Comeniushof, Gubener Str. 47,
10243 Berlin
Tel.: +49 (0)30 / 42 85 10 90
Fax: +49 (0)30 / 42 85 10 92http://www.logos-verlag.deContents
Abstract vi
Zusammenfassung viii
1 Introduction 1
1.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Psychoacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Physiology of the auditory system . . . . . . . . . . . . . . . . 4
1.2.3 Psychoacoustic magnitudes. . . . . . . . . . . . . . . . . . . . 5
1.2.4 Complex psychoacoustic descriptors . . . . . . . . . . . . . . . 8
1.3 Noise Perception and Product Sound Quality. . . . . . . . . . . . . . 9
1.3.1 Sound quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Relation between noise in technical sounds and users . . . . . 10
1.4 Psychophysics and Perception . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Psychophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 Prothetic and metathetic continua. . . . . . . . . . . . . . . . 16
1.5 Tonalness and Consonance . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Switched Reluctance Machines (SRM) 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Torque in SRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Noise in Switched Reluctance Machines 26
3.1 Noise and Vibration in SRM . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Primary noise sources . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Secondary noise sources . . . . . . . . . . . . . . . . . . . . . 29
iii4 Measurement and Simulation of Noise and Vibration of a Switched
Reluctance Machine 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Simple Model of a Switched Reluctance Machine . . . . . . . . . . . . 32
4.3 Numerical Simulation of the Stator Vibration . . . . . . . . . . . . . 33
4.3.1 Finite element method simulation . . . . . . . . . . . . . . . . 34
4.3.2 Boundary element method simulation . . . . . . . . . . . . . . 36
4.4 Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Measurement equipment . . . . . . . . . . . . . . . . . . . . . 43
4.5 Static Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.1 Structure vibration measurements . . . . . . . . . . . . . . . . 47
4.5.2 Directivity measurements . . . . . . . . . . . . . . . . . . . . 52
4.6 Dynamic Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Directivity measurements . . . . . . . . . . . . . . . . . . . . 57
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Control Strategies applied to SRM 61
5.1 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6 Concepts of Tonalness and Consonance 68
6.1 Tonalness/Tonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Terhardt’s tonal components extraction algorithm . . . . . . . 69
6.1.2 The German DIN 45681 tonalness calculation method . . . . . 69
6.1.3 Aures’ tonality calculation . . . . . . . . . . . . . . . . . . . . 70
6.2 Consonance and Dissonance . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Consonance of dyads . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Consonance of harmonic complex tones . . . . . . . . . . . . . 72
7 Listening Tests 75
7.1 Sound Quality of Switched Reluctance Machines . . . . . . . . . . . . 75
7.1.1 Introduction and method . . . . . . . . . . . . . . . . . . . . . 75
7.1.2 Results of the test . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.3 Model and conclusions . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Tonalness: Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Tonalness: Experiment II. . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
iv7.3.2 Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3 Instructions and evaluation method . . . . . . . . . . . . . . . 83
7.3.4 Reliability of the answers . . . . . . . . . . . . . . . . . . . . . 83
7.3.5 Results of the test . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.6 Analysis of variance (ANOVA) . . . . . . . . . . . . . . . . . . 85
7.3.7 Dendrogram: Answering strategies . . . . . . . . . . . . . . . 86
7.3.8 Tonalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.9 Comparison of tonalness and unpleasantness . . . . . . . . . . 89
7.3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Consonance and Dissonance: Experiment I . . . . . . . . . . . . . . . 91
7.4.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.2 Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.3 Instructions, experiment and evaluation. . . . . . . . . . . . . 93
7.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5 Consonance and Dissonance: Experiment II . . . . . . . . . . . . . . 103
7.5.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5.2 Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5.3 Instructions and evaluation . . . . . . . . . . . . . . . . . . . 104
7.5.4 Reliability of the test . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Line Length Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 114
8 Conclusions 116
9 Outlook 120
10 Zusammenfassung 123
10.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Geschaltete Reluktanzmaschine . . . . . . . . . . . . . . . . . . . . . 124
10.3 Geräuschentstehung bei Geschalteten Reluktanzmaschinen . . . . . . 125
10.4 Simulation und Messung an einer Geschalteten Reluktanzmaschine . . 125
10.5 Steuerstrategien bei Geschalteten Reluktanzmaschinen . . . . . . . . 126
10.6 Tonhaltigkeit und Konsonanz . . . . . . . . . . . . . . . . . . . . . . 127
10.7 Hörversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.8 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Danksagung 131
Curriculum Vitæ 133
Bibliography 134
vAbstract
In this work, the production and perception of noise from technical equipment is
presented. As a case study, the noise of switched reluctance machines (SRM) was
used.
The first chapter of this dissertation is the introduction and refers to the noise
problem, specially of technical origin. Therefore several psychoacoustic magnitudes
and parameters that are widely used for describing sounds are presented, followed by
some ideas about noise perception. The concept and applications of sound quality of
a product are shown as well as the importance of the information that a sound (or
noise) can give to the user of that product (e.g. a machine). Then, some theories
and measurement methods on human perception and psychophysics are introduced.
Finally the concepts of tonalness and consonance of sound are briefly presented.
In the second chapter, the principle of operation of SRM is presented and its
torque production is derived. Chapter 3 presents some noise problems of electrical
machines. The vibroacoustic consequences of the radial forces acting on the stator
teeth is a typical SRM problem. In the fourth chapter the vibration characteristic of
themachineisdescribed. Asimpleanalyticmodel(usingtwoquadrupoles)servesasa
first approximation. Afterwards the results of the numerical simulation (FEM-BEM)
are presented and compared with the measured data. The constructed eddy-current
test bench as well as the multi-channel measurement equipment is presented. The
results from the motor housing vibration shows that the vibration behavior of the
machine can be described by two mode 2 vibrations. The directivity of the radiated
sound from the machine is also presented.
In the fifth chapter, the results from a noise optimized control strategy for a SRM
are shown, with an example of what is achievable and which are the limits of such
strategy.
The concepts of tonalness and consonance and some theories behind them are
presented in chapter 6. Then, the results of the psychoacoustic listening tests are
presented. The listening tests were performed to obtain quantitative information
about the perceptual characteristics of the noise. Each listening test is presented
individually, as well as the statistic evaluation and analysis of it. The stimuli used
were recordings ofmachine noiseorsynthesized sounds, based onmachine recordings.
The main conclusions of this work are:
vi• For the measured 8/6 SRM, the most important vibration problem is a cylin-
drical mode 2 vibration. The eigenfrequency of this mode is in the frequency
range where the hearing system is most sensitive and the radial force excites
mainly this mode.
• Oneimportantcomponent oftheperceived annoyance oftechnical sounds isthe
tonalness.
• ThecomparisonofdifferenttonalnesscalculationalgorithmsshowedthatAures’
had a high agreement with the results from the listening tests.
• The consonance/dissonance of technical sounds depends on several parameters.
Roughness is probably the most important, which is highly dependent on the
frequency ratio between tonal components.
• Using two different evaluation methods for the listening tests (magnitude esti-
mation and category partition) gave the same results for the consonance listen-
ing test.
vii