La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Partagez cette publication

Egl Sendžikien  
Summary of the Doctoral Dissertation  Technological Sciences (T000) Environmental Engineering and Land Management (04T)                         Kaunas, 2005
 Dissertation was performed in 2001-2005 at Lithuanian University of Agriculture.  Scientific supervisor: Assoc. Prof. Dr. Prutenis Petras JANULIS (Lithuanian University of Agriculture, Technological Sciences, Environmental Engineering and Land Management – 04T)  Council of Environmental Engineering and Land Management:  Chairman: Prof. Habil. Dr. Algimantas Povilas SIRVYDAS (Lithuanian University of Agriculture, Technological Sciences, Environmental Engineering and Land Management – 04T)  Members: Prof. Dr. Habil. Vladislovas KATINAS (Lithuanian Energy Institute, Technological Sciences, Environmental Engineering and Land Management – 04T)  Assoc. Prof. Dr. Gvidonas LABECKAS (Lithuanian University of Agriculture, Technological Sciences, Environmental Engineering and Land Management – 04T) Assoc. Prof. Dr. Petras PUNYS (Lithuanian University of Agriculture, Technological Sciences, Environmental Engineering and Land Management – 04T) Prof. Dr. Habil. Stasys ŠINK NAS (Kaunas University of Technology, Technological Sciences, Energetic and Thermoengineering - 06T)  Opponents: Prof. Dr. Habil. Alfredas Martynas SVIKLAS (Kaunas University of Technology, Technological Sciences, Chemical Engineering – 05T) Assoc. Prof. Dr. Sigitas Antanas ŠILEIKA (Lithuanian University of Agriculture, Water Management Institute, Technological Sciences, Environmental Engineering and Land Management – 04T)   The official defence of the dissertation will be held at the open meeting of the doctoral council at 2 p.m. on November 24, 2005 in the 610 room, III building of the Lithuanian University of Agriculture.  Address: Lithuanian University of Agriculture, Student 11, LT-53361 Akademija Kauno r., Lithuania.   The send out date of the Summary of the Dissertation is October 24, 2005. The Dissertation is available at the libraries of Lithuanian University of Agriculture and Water Management Institute.    
Egl Sendžikien  
Daktaro disertacijos santrauka   Technologijos mokslai (T 000) Aplinkos inžinerija ir kraštotvarka (04 T)
Kaunas, 2005
 4  Disertacija rengta 2001-2005 metais Lietuvos žem s kio universitete.  Mokslinis vadovas: Doc. dr. Prutenis Petras JANULIS (Lietuvos žem s kio universitetas, technologijos mokslai, aplinkos inžinerija ir kraštotvarka - 04T)  Disertacija ginama Lietuvos žem s kio universiteto Aplinkos inžinerijos ir kraštotvarkos mokslo krypties taryboje.  Pirmininkas: Prof. habil. dr. Algimantas Povilas SIRVYDAS (Lietuvos žem s kio universitetas, technologijos mokslai, aplinkos inžinerija ir kraštotvarka - 04T)  Nariai: Prof. habil. dr. Vladislovas KATINAS (Lietuvos energetikos institutas, technologijos mokslai, aplinkos inžinerija ir kraštotvarka 04T) -Doc. dr. Gvidonas LABECKAS (Lietuvos žem s kio universitetas, technologijos mokslai, aplinkos inžinerija ir kraštotvarka - 04T) Doc. dr. Petras PUNYS (Lietuvos žem s kio universitetas, technologijos mokslai, aplinkos inžinerija ir kraštotvarka -  04T) Prof. habil. dr. Stasys ŠINK NAS (Kauno technologijos universitetas, technologijos mokslai, energetika ir termoinžinerija - 06T)  Oponentai: Prof. habil. dr. Alfredas Martynas SVIKLAS (Kauno technologijos universitetas, technologijos mokslai, chemijos inžinerija – 05T) Doc. dr. Sigitas Antanas ŠILEIKA (Lietuvos žem s kio universitetas, Vandens kio institutas, technologijos mokslai,  aplinkos inžinerija ir kraštotvarka - 04T)   Disertacija bus ginama viešame Aplinkos inžinerijos ir kraštotvarkos mokslo krypties tarybos p odsyje 2005 m. lapkri č io 24 d. 14 val. Lietuvos žem s kio universiteto III r m 610 auditorijoje.  Adresas: Lietuvos žem s kio universitetas, Student 11, LT-53361 Akademija Kauno r., Lithuania   Disertacijos santrauka išs i sta 2005 m. spalio 24 d.  Disertacij ą galima perži r ti Lietuvos žem s kio universiteto ir Vandens kio instituto bibliotekose.   
 INTRODUCTION Actuality Consumption of renewable material and energy resources is the major direction of the Worlds Community sustainable development, and represents the possibility to decrease the impact on the environment by greenhouse gases and dependence on supply of mineral resources. This is a part of Environmental technology action plan, with the goal to increase the life level of EU community and give new impact to the economical growth. Major point of this plan is consumption of renewable resources in transportation and electrical power production. Biodiesel fuel for transportation is produced from agricultural products. This gives a possibility to decrease environmental pollution, increase agricultural production consumption for not food purposes, creation of extra workplaces. Another very important issue of Worlds Community sustainable development is waste utilisation. Lithuanian textile industry is using fibre flax, but its  oil is polluted with pesticides, so it can not be used for food industry. Wastes of animal origin are destroyed by incineration. In this process no energy is generated, no useful product is produced, but greenhouse gases are emitted to the atmosphere. All waste products, even used frying oil in one or another way become pollutants to the environment. Therefore it is useful to explore possibilities to use fatty wastes for biodiesel fuel production. Because of higher biodiesel fuel production costs in comparison with fossil fuel, it is important to search for ways to decrease them, by putting down costs for material and energy consumption. By using of fatty wastes for biodiesel fuel production, the production costs would go down, and at the same time life cycle indicators will be better, so this will lead to increased biofuel competitive ability. For this reason research activities in biodiesel fuel production by using of fatty wastes are very important. Research hypothesis: Usage of fatty wastes of animal and vegetable origin for production of biodiesel fuel may lead to decrease negative impact on the environment, energy consumption as well as overall production costs. Research goal and objectives: to investigate possibilities of fatty waste usage for biodiesel fuel production, to determine impact of product obtained on the environment. To achieve this goal the following tasks have been formulated: 1.  to estimate the potential of vegetable oil and animal fat wastes in Lithuania, to evaluate the properties of this waste and possibilities to use it for biodiesel fuel production. 2.  to investigate esterification process of free fatty acids by methanol using acid catalyst and to determine optimal reaction parameters. 3.  to investigate parameters of final transesterification process of partly esterified fat and oil by methanol. 4.  to determine oxidation stability of the produced fatty acid methyl esters and to evaluate other essential standard quality parameters. 5.  to determine dependence of solubility of biodiesel fuel mixtures with fossil diesel fuel and ethanol (FAME-D-E) on temperature, to evaluate stability limits of these mixtures. 6.  to evaluate engine emissions when fuelling with multi-component biofuel, containing fatty acid methyl esters of vegetable and animal origin, fossil diesel and ethanol. 7.  to carry out the Life cycle analysis of the produced biodiesel fuel. 8.  to evaluate biological decomposition of biodiesel fuel in the environment. Scientific novelty. For the first time has been conducted an integrated research of possibilities to apply different kinds of fatty wastes for biodiesel fuel production. For this reason esterification process of oil an fat rich of free fatty acids by using acid catalysts and further transesterification of the obtained product until standard requirements for biodiesel fuel have been fulfilled. Intersolubility of different components of multi-component biofuel systems, and limits of stability were investigated. Emissions of the biodiesel fuel were analyzed and fuel biological decomposition in the environment was studied. Life cycle parameters of the suggested biodiesel fuel production process were determined.  Practical value of research: Evaluation of local Lithuanian potential of fatty wastes has been done. Their quality parameters have been estimated. The developed production technology could be introduced in KAC „Telš i bioenergija“ and KSC „Rapsoila“. Approval and publication of research. Results of the research are presented in 15 publications, 3 of them published in journals, included into the list of reviewed scientific papers in ISI, 5 in journals, included into the list of reviewed scientific papers in Lithuania and 5 reported in international conferences. Structure and contents of dissertation. Dissertation consists of introduction, literature survey, experimental part, results and discussions, conclusions, list of 140 references, 7 appendixes. The main material is presented in 96 pages including 21 tables and 40 figures.  Statements presented for defense: 1.  Lithuania has enough fatty wastes suitable for biodiesel fuel production. The main problem for production process is high free fatty acid content presented in waste. Fatty acids may be also successfully esterified but this needs further integrated research. 2.  Multi-component biodiesel fuel mixture of rapeseed  oil fatty acid methyl esters, linseed oil fatty acid methyl esters and tallow fatty acid methyl esters, may meet standard requirements for iodine value and linolenic acid methyl ester content by choosing appropriate ratio of mixture components. 3.  Oxidation stability of fatty acid methyl esters (FAME) may be increased by choosing appropriate ratio of mixture components and by choosing appropriate antioxidants. This may be done after evaluation of
 6 oxidation changes depending on storage of FAME. It is possible to produce FAME mixtures, which may be recommended for use in diesel engines. 4.  For diesel engines it is expedient to use multi-component biofuel (diesel, ethanol, fatty acid methyl esters), one of components of which is absolute ethanol. 5.  Life cycle energy efficiency indicator directly depends on raw materials used. To increase this value it may be suitable to use mixtures of fatty acid methyl esters, one of component of which being methyl esters produced form waste fat or oil. 6.  Biological decomposition of FAME mixtures in the environment should meet the following requirement: 90 % of product decomposed within 21 day.  1. METHODS OF RESEARCH Physical and chemical characteristics of fatty waste, free fatty acids, used frying oil, linseed oil, rapeseed oil from foul material were determined: density, by LST EN ISO 12185:1999; viscosity by LST EN ISO 3104+AC:2000; melting point by LST EN ISO 6321:2003; saponification value by LST EN ISO 3657:2003; acidity by LST EN ISO 600:2000; iodine value by LST EN ISO 3961:2000; moisture by LST EN ISO 662:2001; insoluble impurities content by LST EN ISO 663:2003; triglyceride content by LST EN ISO 14105:2004; fatty acid composition by LST EN ISO 14103:2004. Waste fat, before usage for biodiesel fuel production, were specially prepared: the moisture was evaporated and they have been filtered. Optimal conditions of esterification and transesterification have been set at standard laboratory equipment. For the reason to investigate process of esterification of fatty waste by methanol, oil with different oleic acid content has been used. Esterification using acid catalyst has been carried out in the thermostatic flask with hermetical stirrer. Oil with oleic acid has been mixed with methanol (18 %). The mixture was homogenized, and acid catalyst added (conc. H 2 SO 4 ) at constant temperature. By seeking to reach the maximum lowest free fatty acid (oleic acid) content, initial free fatty acid concentration, temperature and catalyst concentration have been varied. The acidity of the obtained fatty acid methyl esters, after catalyst has been eliminated, has been analyzed. Partly esterified fat and oil have been further transesterified by methanol, using alkali catalyst (KOH). The procedure went trough 2 stages. Produced methyl esters have been washed twice by 10 % (mass) 10 % phosphoric acid solution. After the mineral acid has been separated methyl esters have been washed by distilled water, desiccated and analyzed according to the requirements of LST EN 14214. Solubility of biodiesel fuel components has been investigated under isothermal conditions using turbidimetric method. Different mixtures of two components was placed in the cell of a spectrophotometer “Spekol-11” equipped with a magnetic stirrer and titrated by a third component measuring absorbance at wave length 590 nm. The contents of components of heterogenic multi-component systems, has been determined by using standard chromatographic methods (Chrom 5). For research of engine emissions experimental one cylinder direct injection AVL type engine 502.019 has been used. Experiments have been accomplished at the Coburg University of Applied Sciences (Germany). NOx, CH, CO and CO 2 emissions in exhaust gases have been determined using exhaust gas analyzer AMA (Pierburg Instruments). Polycyclic aromatic hydrocarbons (PAH) have been analyzed applying two different methods: induction laser fluorescence spectrometry (LIF, Optimare) and high performance liquid chromatography (HPLC, Varian). To calculate FAME Life cycle energy indicator R 1 , energy consumed for raw material extraction/preparation as well as energy consumed in biodiesel fuel production processes was evaluated. Total energy consumption in RME Life cycle was divided into three main stages: energy used in agriculture (growing of rapeseed), energy consumed for oil extraction and energy used for oil transesterification. In biodiesel fuel produced from fatty wastes Life cycle energy consumed for waste preparation and processing into biodiesel fuel was evaluated. Biological decomposition of biodiesel fuel in water has been determined applying CEC L-33-T-82 method. Bacterial substrate for experiments has been obtained from JSC “Kauno vandenys” sampled after the first wastewater cleaning (mechanical) stage. Samples after extraction have been analyzed using infrared spectroscopic method at KTU Chemical engineering department, using FT-IR spectrometer Spectrum GX (Perkin Elmer). Results are represented by figures and tables. Mainly all analysis has been done using triplicates. Some points at the figures represent experimental values x, which have been calculated from 3 parallel experiments. Values of the experiments have been evaluated using MS Exel 2003 software by methods, calculating mean value X of parallel measurements and by calculating standard deviations. For evaluation of one parameter dependence on another, regressive analysis has been used.  2. RESULTS AND DISCUSSION 2.1. Potential of vegetable oil and waste animal fat, their properties and suitability for biodiesel fuel production Suitable for biodiesel fuel production animal fat and vegetable oil waste in Lithuania are spoiled rapeseed, linseed oil contaminated with plant protection chemicals and hence unsuitable for food, used frying oil, animal fat obtained in the process of meat and milk processing, dead animals and slaughterhouse waste (fat meat bone mass) and free fatty acids produced in edible oil and biodiesel fuel production. In 2004 some 2004.7 thousands of tons of rapeseed were produced in Lithuania. Rapeseed has to be processed very quickly (during 1-1.5 days). Some of farmers miss this, for this reason about 10 % of rapeseed does not fit for
  7 edible oil production. From waste rapeseed with considerably higher free fatty acid content, some of 4 thousands tons of biodiesel fuel may be produced annually. In 2004 some 5.8 thousands tons of fibre linseed has been produced. Linseed is produced for textile industry, so no attention for oil quality is paid. Thus the linseed oil is not suitable for food production because of high contamination with pesticides and is considered as waste product. About 1-1.5 thousands tons of linseed oil may be used for biodiesel fuel productions annually. In food processing industry as well as private household huge quantities of oil and fat become waste. On the whole in Lithuania about 3 to 4.3 thousands tons per year of used for frying oil could be collected. In the biodiesel fuel and oil production waste free fatty acids are formed. This is about 2.5 % from the total amount produced or about 1 thousand tons of free fatty acids per year. About 26144.5 tons of animal waste is generated annually in Lithuania. Presently animal waste is utilized by JSC “Rietavo vererinarin  sanitarija“ by incineration. This causes damage to the environment. Animal waste is divided into 2 categories: SRW – specific risk waste, ARW – acceptable risk waste. SRW is used for meat bone flour (MBF) production and the later fat waste is utilized by incineration. In 2003 company has produced about 3739.2 tons of MBF and 674.4 tons of technical fat. About 1415.5 tons of MBF and about 103.3 tons of technical fat have been incinerated, the rest of technical fats has not been utilise. Represented figures allow to make forecasting that in Lithuania about 1.5 thousands tons of animal fat may be used for biofuel production. Technical fat used for the experiment has been sampled at JSC “Rietavo vererinarin sanitarija“, used frying oil samples have been taken from MacDonald, linseed oil samples - from JSC „KlemOLIS“, free fatty acid samples and samples of spoiled rapeseed oil - from KAC „Telš i bioenergija“. Results of fatty waste analysis showed that problems may occur only by using of animal fat with 2 % or more acid values and high content of saturated fatty acids. Used frying oil may be successfully used for biodiesel fuel production, but initial separation of solid particles by filtering as well as separation of moisture by heating at 115 °C temperature should be carried out.  2.2. Esterification of presented in fatty waste free fatty acids by methanol using acid catalysts Oil of acidity higher than 2 % (mass) can not be directly transesterified into biodiesel fuel because of soap formation. Free fatty acids have to be esterified before transesterification of triglycerides. Esterification yield was evaluated according to the reduction of content of oleic acid in the reaction mixture. The reaction rate of oleic acid in esterification experiments (w = dc/d τ ) and other kinetic parameters were calculated using graphic differentiation methods. 2 -3 -1,5 -1 -0,5 0 0,5 1 1.5 -4 R 2 = 0,96 R 2 = 0,97   1 -5 2 = R 0,92 0.5 -6 0 0 30 60 90 120 150 180 -7 τ, min lnc 0  Fig. 1. Change in concentration of the non-Fig. 2 . Dependence of reaction rate on reacted oleic acid (c) as a function of time τ , concentration of oleic acid in logarithmic at 60 o C temperature, initial acitity (mol/l): * – coordinates at the temperature of +60 o C when 1,948 –1,017  , –0,501, –0,346  the reaction duration is: – 11.25 min, – 30 min, – 60 min  The changes of non-reacted oleic acid concentration in reaction mixture upon time at optimal experimentally determined temperature (+ 60 o C) are demonstrated in the Fig. 1. Data indicated that during the first hour concentration of oleic acid decreased by 40-75 % depending on the initial concentration of oleic acid (0,346-1,948 mol/l). During the second hour concentration of oleic acid decreased by 5-69 % and during the third hour – by 4-50 %. The most substantial decrease was observed during the first hour of reaction. Dependence of reaction rate on oleic acid concentration in logarithmic coordinates is demonstrated in Fig. 1. From results apparent reaction rate constant k t  and apparent reaction order n t were calculated (Table 1). They changed during the reaction time. At the beginning of the process the reaction order was 0.69, while after one hour of reaction it was 1.50. Reaction rate constant decreased from 1.54*10 -2 min -1 to 0.45*10 -2 min -1 . This indicates the influence of agent diffusion on the reaction time. Such dependence is characteristic to many real heterogeneous processes. Data suggests that having excluded the effect of diffusion, the reaction order is close to one.  Table 1. Apparent kinetic parameters at +60 o C for different reaction time  n t , min  n t k t, mi -1 11.25 0.69 1.54*10 -2 30 1.20 0.85*10 -2 -2 60 1.50 0.45*10  
b tulytadeh dyorxytoluene (BHA)  detrdyhayxoozin (leA)BHr  o %10tiirhtc di(  cca of 20 %oxidantinoituloshte ni sog tolanwir heet to incr Seekingo ixaditaeest ehstt daanot nee memer.stnr driuqeen ue be havantsytal %ub1  0es:dsy, tylibita sondixoitna citehtnpt Oalimet dmiereltttib teb .retct of BHT was limilira ,ub tfeefpm p00 4miE RM. oib ni ssaw leuf antn ofdantioxioccnen dtaoinert tceT noregnffe d harostdaxis nt.tA tnoiysengrsient) as ant conts ylraen saw THBd anA BHf  ossneitevffce.EE  hMR witringompaME c yrev si.0 - wol0.;  h180.;  h44r se83h vileeptchis y. Te acvaludroc gnit ots ehndtad arqureemirne thsuodlb  e 6h and higher. Ity ttfad ar lrkpoetse lyhtem dicallow, taPME)rs (emhtic dyta f ta(Ts ) ME eylerst dee lio dnasnilid methyfatty ac( SLEM ) lseetsrThe rs. est highm teuperseetyh ls hay itea renbeoitadixolibats n of ratio 1:9 anhcdei  nimtxruse, lyt bueythid d:2 der 8cepsevitixadtao  ,htnidetermn de bee hasm EMP dna EMSL f otylibita sontina dMT EsaL MS Eas well ixtures taht fo t re nahs  ighhixtmiesur eiwaicnmolplec ndar statherth ogne leseid ni leful seieodbie in .rPoi rq auilythe biofuto use titauo no roflavel seelfubif ieodny om ma quatherv lailytes teu sticafirildie yonylno si orf eno ase the reactionr ta.eT arsnseettira ionthn mie rutxla ed osercef  oP)(Id ioer pnoitcudnI .snoitondige ctoraas sle lsaw tn sixad aaliont nofurattnau ytiretsq ,smethyl ety acid  nfof tapmsotioio sdnepeoc eht nta sonti dtylibiseetyh lixadsrO tty f fa metacidnoitats ilibo ytd.ne2.   O4.daxiohlu debd tereimd requirements sesnaretso egrt fisn ee nicifioatsnseetired.dT ar experimficationac EMR hcuS  noifod se ubet non nisee gnsele rid staconde se; th. ig D3.enepncdefo eart sesniretfication yield o nercaitnod ruta0001080656045301 ,t09570MR %0nimME25E5%R35%R%RMER%EMEM05EMF 58R% to loweon leads fudaritaeisgno on cntceerghME RetariH .gnir fo hen st wigheis hta enor cait .eRcrIn. in m 5isn oitarud noitcaercieitnr aetcoi nhat the most eff ehtsrif03 tnim  gisngoiit wn hiMR Ene tne toctn witentsfferh di sah erut ,nwohsctea rinxtmin iop mp4 00HB Ao  fAfte h. dingr adaer ytil3.1 sehctidaxi obita sonoo metpmretaru,edark place, at r1 roy 5.,rae ni orste ag Rof fME 6 9. 4.hfoB TH– ntcot en shee amiw ,t ht.6 –h 404 htp 00a mpoitn6 d of% SM LwiE s ohew dihhgreo xidant BHT added1 ,% 8 g dna % 6 cesurxtinintaon 2,%EM , ,na4 %  of 24 %or PTME n sothwiom cripalbatni eew Es er stabilixidation eebtso P EM .hTurxtmif  oIP. tyilibats noitadixh TM wituresMixth  .de8 aehcser % RME, 4 % LSME,1  6 %MT.EB ceua bsediioelesue fsi lven u re desave ty huresmixtatnic no08% ni g4 , ME R, MELS% EMP % 61 08 dna foo ixadhcnaeg sbility dtion stats egaroniruht gAf. r tepee odrireb a tfgithtsard, iduce proeingtropmi yrev si te atluva etot anmeeparutsa enit his siture. In tils lthgercnsesa iherencwiy  tthT ehse.srpcoih ste in ractio rearahc era A dna t tor ficstriteac dispersion of cmoopentn.s  2 3.d anteras  ifiefneicim tgnixdna tiongulathe  of itnoercaup to tuann ioattiecff eusaem ever fo erattrnsiocof enncnar o egne eeritic of thacteristra ehcraciitno stres ronsifuif dtaht gnitseggus llowrs ameteparase e .hT.172 t=AwoL lav  seuE foioatisn ig hr.hecia ic doccnnerton, when the oleht fo gnitcaer ehe tatn niineg btsduem se evei,d rea andn tictio lio deesepar tsaticiferstseantr9 .6 dsiiyleoi n4 shure  Fig5 %.reff.tneb llid e tngLSo cc Adior41r qeiu TNE1 24the lowerements ticafirildie yon )% 07( neeb sahched reahin  wit 0im036-2040.n  s,owha tdut ngrieht rif s tsegat (0 % RME) the hgiehtst arsnseeted frifiestelly trai faploo htnateas wtyat fngsiu yB  lio dna taeters ofof paramnitaoi n .eDetmr bonmey firiticasnaretsenif t lat ehse,stntiq auicaterifprocion e lyhtemiw sretsat fofy d ci atyrene tmauotno  f, which has difffa , retdicatse eefrat f atydsci  8rP-exeopentn A and apparent ng itakited culaht enu tcaoctn ovatiacf  ogyerenlac erew tE noitures in temperattnaill yht eopetrapatemeocprs esreff tnea srid t.0 0 59504.1-01*  2 peDeennd oce fht epaapertnr eaction rate contk tnatspmet no e urater Ahe tinui shrneidanocroallotes to cwed he tne ecualtelavitcoita ygra fo the resn. Underdntioisnaecr hocgyerent enarpp aE noitavitca fo mol, kJ/13.3t  nonee-pxp era dne. when the reacikenit craae ,.i eoteexcd de m15noitmit od en se 2. ablerentAppaaTlbni(  .T  e)2ea(rs erdun ioctcitenik temarap ertnt metad fief5 min.) ration 1nim tA1-n  C,tkt ts  o, raperetu2-  *6010 7.7.7820 0ol +kJ/mEt, 6+ 03.31 72.12-0*1980.4 710.4 +3