//img.uscri.be/pth/0a27ff26cd76561d2a3f2c184c0878558e796155
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 269,66 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Annual Plant Reviews, The Plant Cell Wall

De
400 pages
Annual Plant Reviews, Volume 8

In the last few years, the new analytical tools associated with molecular biology, biochemistry, spectroscopy, microscopy, immunology, genomics and proteomics have been employed to investigate plant cell wall structure and function, providing a degree of resolution that was, until recently, unattainable. This has resulted in a growing awareness of the critical role of plant cell walls in a broad range of developmental events, adding strength and diversity to cell wall-related scientific research.

This volume provides an overview of our current understanding of plant cell walls, drawing on the recent advances of plant molecular biology. It incorporates the identification of a rapidly growing number of genes and the proteins responsible for plant wall synthesis, restructuring, degradation and wall-associated signal transduction. The book bridges the biochemistry-oriented cell wall literature and the new technology-driven approaches.

This is a book for academic and industrial researchers in plant cell biology, biochemistry, developmental biology, genetics and molecular biology.

Voir plus Voir moins
Contents
List of contributorsPreface
1
The composition and structure of plant primary cell walls MALCOLM A. O’NEILL and WILLIAM S. YORK
1.1 Introduction 1.2 Definition of the wall 1.3 The composition of the primary cell wall 1.4 The macromolecular components of primary walls 1.5 Determination of the structures of primary wall polysaccharides  1.5.1 Mass spectrometry  1.5.1.1 Matrixassisted laserdesorption ionization (MALDI) with  timeof flight (TOF) mass analysis  1.5.1.2 Electrospray ionization (ESI)  1.5.1.3 Fastatom bombardment mass spectrometry (FABMS)  1.5.2 Nuclear magnetic resonance spectroscopy (NMR)  1.5.2.1 The structural reporter approach and spectral databases 1.6 Oligosaccharide profiling of cell wall polysaccharides 1.7 The structures of the polysaccharide components of primary walls  1.7.1 The hemicellulosic polysaccharides  1.7.2 Xyloglucan  1.7.3 Variation of xyloglucan structure in dicotyledons and monocotyledons  1.7.4 Xylans  1.7.5 Mannosecontaining hemicelluloses 1.8 The pectic polysaccharides  1.8.1 Homogalacturonan  1.8.2 Rhamnogalacturonans  1.8.3 Substituted galacturonans  1.8.3.1 Apiogalacturonans and xylogalacturonans  1.8.3.2 Rhamnogalacturonan II 1.9 Other primary wall components  1.9.1 Structural glycoproteins  1.9.2 Arabinogalactan proteins (AGPs)  1.9.3 Enzymes 1.9.4 Minerals 1.10 General features of wall ultrastructural models  1.10.1 The xyloglucan/cellulose network  1.10.2 The pectic network of dicotyledon primary walls  1.10.3 Borate crosslinking of RGII and the pectic network of primary walls 1.11 Conclusions Acknowledgements References
xi xv
1
1 2 3 4 5 8
9 9 10 10 12 13 14 14 14 15 19 19 19 20 22 24 24 25 31 31 31 31 31 32 33 38 40 44 44 44
vi
2
3
4
CONTENTS
Biophysical characterization of plant cell walls V. J. MORRIS, S. G. RING, A. J. MACDOUGALL and R. H. WILSON
2.1 2.2 2.3 2.4
Introduction Infrared spectroscopy of plant cell walls 2.2.1 Infrared microspectroscopy 2.2.2 Polarization 2.2.3 Mapping 2.2.4 Mutant screening methods 2.2.5 Analysis of cell walls 2.2.6 Twodimensional FTIR spectroscopy Atomic force microscopy of cell walls 2.3.1 Plant cells 2.3.2 Plant cell walls 2.3.3 Cellulose 2.3.4 Pectins 2.3.5 Arabinoxylans 2.3.6 Carrageenans Molecular interactions of plant cell wall polymers 2.4.1 Plant cells and their wall polymers 2.4.2 The pectic polysaccharide network 2.4.3 Ionic crosslinking of the pectic polysaccharide network 2.4.4 The significance of polymer hydration for the plant cell wall 2.4.5 Swelling of the pectin network References
Molecules in context: probes for cell wall analysis WILLIAM G. T. WILLATS and J. PAUL KNOX
3.1 Introduction 3.2 Technologies for the generation of antibodies 3.3 Targets, immunogens and antigens  3.3.1 Pectic polysaccharides  3.3.2 Hemicellulosic polysaccharides  3.3.3 Proteoglycans and glycoproteins  3.3.4 Phenolics and lignin 3.4 Extending antibody technologies: the way ahead  3.4.1 High throughput antibody characterization: microarrays  3.4.2 Antibody engineering References
5
5
55 55 57 57 61 61 62 63 66 67 68 70 71 75 76 78 78 80 81 84 84 87
9
2
92 93 97 97 100 100 102 102 102 103 106
Nonenzymic cell wall (glyco)proteins 111 KIM L. JOHNSON, BRIAN J. JONES, CAROLYN J. SCHULTZ and ANTONY BACIC
4.1 4.2
Introduction Hydroxyprolinerich glycoproteins (HRGPs) 4.2.1 Posttranslational modification of HRGPs  4.2.1.1 Hydroxylation of proline  4.2.1.2 Glycosylation of hydroxyproline
111 113 114 114 115
5
6
CONTENTS
 4.2.2 Extensins  4.2.2.1 Extensin structure  4.2.2.2 Chimeric extensins  4.2.2.3 Crosslinking of extensins into the wall  4.2.2.4 Extensin function  Structural roles  Developmental roles  4.2.3 Arabinogalactanproteins (AGPs)  4.2.3.1 Structure  4.2.3.2 Chimeric AGPs  4.2.3.3 AGP function  4.2.4 Prolinerich proteins (PRPs)  4.2.4.1 Structure of PRPs  4.2.4.2 PRP function  4.2.5 Hybrid HRGPs 4.3 Glycinerich proteins (GRPs)  4.3.1 GRP structure  4.3.2 GRP function 4.4 Other wall proteins 4.5 Conclusion Acknowledgements References
Towards an understanding of the supramolecular organization of the lignified wall ALAINM. BOUDET
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
Introduction The dynamics of lignification: chemical and ultrastructural aspects Interactions and crosslinking between nonlignin components of the cell wall Integration of lignins in the extracellular matrix 5.4.1 Ultrastructural aspects 5.4.2 Interactions and potential linkages with polysaccharides New insights gained from analysis of transgenic plants and cell wall mutants 5.5.1 Tobacco lines downregulated for enzymes of monolignol synthesis 5.5.2 Cell wall mutants Cell wall proteins: their structural roles and potential involvement in the initiation of lignification and wall assembly Conclusions Acknowledgements References
Plant cell wall biosynthesis: making the bricks MONIKA S. DOBLIN, CLAUDIA E. VERGARA, STEVE READ, ED NEWBIGIN and ANTONY BACIC
6.1 6.2
Introduction 6.1.1 Importance of polysaccharide synthesis 6.1.2 General features of plant cell wall biosynthesis Synthesis at the plasma membrane 6.2.1 Use of cytoplasmic UDPglucose in glucan synthesis at the plasma membrane 6.2.2 General features of cellulose biosynthesis
vii
117 117 119 122 124 125 125 126 126 131 132 134 134 135 137 139 139 141 142 142 143 143
155
155 156 158 160 160 161 164 165 168
170 175 177 178
183
183 183 184 186 186 186
viii
7
8
CONTENTS
 6.2.3 First identification of a cellulose synthase: theCESAgenes  6.2.4 Roles of differentCESAfamily members  6.2.5 Other components of the cellulose synthase machinery  6.2.6 Involvement ofCSLDgenes in cellulose biosynthesis  6.2.7 Callose, callose synthases, and the relationship between callose  deposition and cellulose deposition  6.2.8 Identification of callose synthases: theGSLgenes  6.2.9 Other components of the callose synthase machinery 6.3 Synthesis in the Golgi apparatus  6.3.1 General features of polysaccharide synthesis in the Golgi  6.3.2 Nucleotide sugar precursors for polysaccharide synthesis in the Golgi  6.3.3 Synthesis of noncellulosic polysaccharide backbones: possible role of CSLandCESAgenes  6.3.4 Synthesis of branches on noncellulosic polysaccharides: role of  glycosyl transferases 6.4 Future directions References
WAKs: cell wall associated kinases JEFF RIESE, JOSH NEY and BRUCE D. KOHORN
7.1 Preface 7.2 Introduction 7.3 The cell wall and membrane 7.4 Cell wall contacts 7.5 The WAK family 7.6 A transmembrane protein with a cytoplasmic protein kinase and cell wall domain 7.7 WAKs are bound to pectin 7.8 Genomic organization of WAKs 7.9 EGF repeats 7.10 WAK expression 7.11 WAKs and cell expansion 7.12 WAKs and pathogenesis 7.13 WAK ligands 7.14 WAK substrates 7.15 Summary Acknowledgements References
Expansion of the plant cell wall DANIEL J. COSGROVE
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10
Introduction Wall stress relaxation, water uptake and cell enlargement Alternative models of the plant cell wall The meaning of wallloosening and wall extensibility Time scales for changes in cell growth Candidates for wallloosening agents Expansins Xyloglucan endotransglucosylase/hydrolases (XTHs) Endo1,4βDglucanases Nonenzymatic scission of wall polysaccharides by hydroxyl radicals
187 192 195 197
198 200 202 203 203 204
207
211 212 213
223
223 223 224 224 226 226 227 227 228 228 230 231 231 232 233 234 234
237
237 238 239 241 243 244 245 249 252 254
9
8.11 Yieldin8.12 Summary References
CONTENTS
Cell wall disassembly JOCELYN K. C. ROSE, CARMEN CATALÁ, ZINNIA H. GONZALEZCARRANZA and JEREMY A. ROBERTS
9.1 Introduction 9.2 Fruit softening  9.2.1 Pectins and pectinases  9.2.1.1 Polyuronide hydrolysis and polygalacturonase  9.2.1.2 Pectin deesterification: pectin methylesterase and  pectin acetylesterase  9.2.1.3 Pectin depolymerization and pectate lyases  9.2.1.4 Pectin side chain modification: galactanases/βgalactosidases  and arabinosidases  9.2.1.5 Rhamnogalacturonase  9.2.1.6 Regulation of pectin disassembly in ripening fruit  9.2.2 Cellulose and celluloseinteracting proteins  9.2.2.1 C cellulases/Endoβ1,4glucanases x  9.2.2.2 Expansins  9.2.3 Hemicelluloses and hemicellulases  9.2.3.1 Xyloglucan and xyloglucanases  9.2.3.2 Mannans and mannanases  9.2.3.3 Xylans and xylanases  9.2.4 Scission of cell wall polysaccharides by reactive oxygen species (ROS)  9.2.5 Summary of wall disassembly during fruit ripening. 9.3 Abscission and dehiscence  9.3.1 Signals that regulate abscission and dehiscence  9.3.2 Biochemical and molecular events associated with wall disassembly  9.3.3 Strategies to study cell wall dissolution during abscission and dehiscence 9.4 Other examples of cell wall disassembly 9.5 Conclusions, questions and future directions Acknowledgements References
10 Plant cell walls in the postgenomic era  WOLFRÜDIGER SCHEIBLE, SAJID BASHIR  and JOCELYN K. C. ROSE
10.1 10.2 10.3 10.4 10.5
Introduction Genome annotation and identification of cell wall related genes and proteins Assigning gene functions using reverse genetics and the tools of functional genomics 10.3.1 Overview of reverse genetics 10.3.2 DNAinsertion mutagenesis and identification of tagged mutants 10.3.3 Additional reverse genetics resources for mutant alleles 10.3.4 Finding phenotypes for knockout mutants; running the gauntlet Forward genetics in the postgenome era Technologies for transcript profiling and their use to study cell wall formation and differentiation
ix
255 257 258
264
264 265 266 267
270 272
273 275 275 277 279 282 284 284 287 288 289 290 291 292 292 295 297 301 304 305
325
325 326
329 329 330 334 337 338
342
x
CONTENTS
 10.5.1 EST sequencing  10.5.2 DNAarray based approaches  10.5.3 Realtime RTPCR 10.6 Proteomic analysis of plant cell walls  10.6.1 Developments in proteomics technologies  10.6.2 Twodimensional gel electrophoresisbased protein separation and quantitation  10.6.3 Mass spectrometry as a proteomics tool  10.6.4 Subcellular proteomics  10.6.5 Plant cell walls as targets for proteomic studies  10.6.5.1 Cell wall synthesis  10.6.5.2 The cell wall/apoplast: a dynamic subcellular compartment  10.6.6 Proteomic analysis of secreted proteins  10.6.7 Isolation of cell wallbound proteins 10.7 Glycomics 10.8 New and emerging technologies to detect and screen for changes in cell wall polymers 10.9 Outlook Acknowledgements References
Index
342 342 346 347 348 351 351 353 354 354 354 356 357 359 359 362 362 362
377