//img.uscri.be/pth/54389720576c984878cf3ed47ae9822809caa759
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 273,46 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Annual Plant Reviews, The Plant Cytoskeleton in Cell Differentiation and Development

De
344 pages
Annual Plant Reviews, Volume 10

The cytoskeleton is a dynamic filamentous structure composed of at least actin and microtubule networks. Actin and microtubules are no different structurally from their animal and fungal counterparts. However, the strategies of cell differentiation and development in plants require this network to respond appropriately to plant-specific developmental cues and to environmental factors. This book views the cytoskeleton from different perspectives but, on the whole, as a network composed of structural and regulatory proteins controlled by internal and external stimuli that result in different aspects of cell differentiation.


This is a volume for researchers and professionals in plant biochemistry, cell biology and genetics.

Voir plus Voir moins
Contents
List of contributors
Preface
Part 1
1
2
The cytoskeleton: the machinery and key molecules
Microtubules and microtubuleassociated proteins CLIVE LLOYD, JORDI CHAN and PATRICK J. HUSSEY
1.1 Introduction 1.2 Plant tubulin 1.3 Microtubuleassociated proteins 1.3.1 Crossbridging MAPs 1.3.2 Proteins that link microtubules to the plasma membrane 1.3.3 Microtubule motor proteins 1.3.3.1 Kinesinrelated proteins in cytokinesis 1.3.3.2 Kinesinrelated proteins in mitosis 1.3.3.3 Kinesinrelated proteins in interphase 1.3.3.4 Dynein 1.3.4 Proteins involved in microtubule nucleation and release: the formation of the cortical array 1.3.5 Microtubuleinteracting proteins 1.4 Concluding remarks References
Actin and actinmodulating proteins CHRISTOPHER J. STAIGER and PATRICK J. HUSSEY
2.1 2.2 2.3 2.4 2.5 2.6
Introduction Actin Myosin Actinbinding proteins: overview Monomerbinding proteins 2.5.1 ADF/cofilin 2.5.2 Profilin 2.5.3 Adenylyl cyclaseassociated protein Crosslinking and bundling factors 2.6.1 Fimbrin 2.6.2 Villin and gelsolinrelated proteins 2.6.3 115ABP 2.6.4 eEF1α 2.6.5 Spectrin
xii
xiv
1
3
3 5 6 7 13 13 14 17 19 20
21 24 26 27
32
32 33 36 37 38 38 40 46 47 47 49 53 53 54
vi
2.7 Capping factors 2.7.1 Capping protein (CP) 2.7.2 CapG 2.7.3 Others 2.8 Nucleation complexes 2.8.1 Arp2/3 2.9 Other Factin binding proteins 2.9.1 SuSy 2.9.2 ABP/MAP190 2.9.3 AIP1 2.9.4 Annexin 2.9.5 Gephyrin/AtCNX1 2.9.6 AtSH3P 2.9.7 Caldesmon 2.9.8 Tropomyosin 2.9.9 Vinculin 2.9.10 LIM proteins 2.10 Concluding remarks Acknowledgements References
Part 2
3
CONTENTS
Fundamental cytoskeletal activities
Expanding beyond the great divide: the cytoskeleton and axial growth GEOFFREY O. WASTENEYS and DAVID A. COLLINGS
3.1 3.2
3.3
3.4
3.5
Introduction Division planes and the establishment of axiality 3.2.1 Cell plate formation and expansion 3.2.2 Phragmoplast microtubule and microfilament organization 3.2.3 Motor proteins during phragmoplast formation and expansion 3.2.3.1 Vesicle transport in the phragmoplast could be kinesinbased 3.2.3.2 Structural MAPs and kinesins function in phragmoplast formation and expansion 3.2.3.3 Expansion of the phragmoplast and cell plate requires both kinesins and myosins 3.2.4 Cytoskeletal mutants defective in cytokinesis Setting up for axial growth: distinguishing lateral and end walls 3.3.1 The cytoskeleton at end walls of elongating cells Establishing axial growth 3.4.1 A transverse cortical microtubule array is essential for axial growth 3.4.2 Microtubules and their relationship with cellulose microfibrils and xyloglucans 3.4.3 Does the cytoskeleton regulate wall polysaccharide and protein composition? 3.4.4 Hormones, cytoskeleton and wall extensibility 3.4.5 How does the actin cytoskeleton contribute to cell elongation? Polar auxin transport and its regulation by the actin cytoskeleton 3.5.1 Auxin transport and the chemiosmotic theory 3.5.2 Important questions concerning auxin transport and the actin cytoskeleton
55 55 56 57 57 57 58 58 59 59 60 61 61 62 62 63 63 64 65 65
81
83
83 84 84 85 87 88
89
90 91 91 91 92 94
95
96 96 97 98 98
101
4
CONTENTS
3.5.3 Small GTPases may be a key to the shuttling of auxin efflux carriers 3.5.4 Auxin and gene expression 3.6 Bending and twisting – the consequences of differential growth 3.6.1 Tropic bending responses 3.6.2 Twisting 3.7 Conclusions and future perspectives Acknowledgements References
Restaging plant mitosis MAGDALENA WEINGARNER, LASZLO BOGRE and JOHN H. DOONAN
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11
Introduction The cyclin dependent protein kinases 4.2.1 Cdk structure and diversity 4.2.2 Regulation of Cdk activity Sequence of events during mitosis 4.3.1 Stage 1: preparation for mitosis 4.3.2 Stage 2: commitment to mitosis 4.3.3 Stage 3: preventing premature genome separation 4.3.4 Stage 4: separating the genome 4.3.5 Stage 5: exit from mitosis Preparing for mitosis 4.4.1 Animal Atype cyclins 4.4.2 Plant Atype cyclins 4.4.3 The DNA damage checkpoint Commitment to mitosis 4.5.1 Commitment to mitosis in animal cells 4.5.2 Commitment to mitosis in plant cells 4.5.3 The role of animal Btype cyclins 4.5.4 The role of plant Btype cyclins Condensation of chromatin 4.6.1 Condensation of chromatin in animal cells 4.6.2 Condensation of chromatin in plant cells Spindle formation 4.7.1 Spindle formation in animal cells 4.7.2 Spindle formation in plant cells The spindle assembly checkpoint pathway 4.8.1 Regulation of APC Separating the genome 4.9.1 Onset of APCmediated proteolysis in animal cells 4.9.2 Onset of APCmediated proteolysis in plant cells Exit from mitosis and cytokinesis 4.10.1 Regulators of late mitotic events in animal cells 4.10.2 Late mitotic events in plant cells Concluding remarks and perspectives Acknowledgements References
vii
102 103 103 103 106 108 108 108
116
116 117 117 119 120 122 122 123 123 123 123 124 125 126 127 127 128 128 129 131 131 132 132 132 133 134 135 136 136 136 137 137 138 140 140 140
viii
5
6
CONTENTS
Organelle movements: transport and positioning FRANZ GROLIG
5.1 Introduction 5.2 Transport and positioning of particular organelles 5.2.1 Peroxisome 5.2.2 Endoplasmic reticulum 5.2.3 Golgi 5.2.4 Vacuoles 5.2.5 Mitochondria 5.2.6 Chloroplasts 5.2.6.1 Algae 5.2.6.2 Mosses 5.2.6.3 Ferns 5.2.6.4 Seed plants 5.2.7 Nucleus 5.2.7.1 Premitotic nuclear positioning 5.2.7.2 Nuclear migrations elicited by external stimuli 5.2.7.3 Lightgoverned nuclear migration 5.2.8 Phragmoplast/cytokinesis 5.3 Concluding remarks Acknowledgements References
The cell wall: a sensory panel for signal transduction KEIKO SUGIMOTOSHIRASU, NICHOLAS C. CARPITA and MAUREEN C. McCANN
6.1 Introduction 6.2 Plant cell wall composition and architecture 6.2.1 Cellulose 6.2.2 Crosslinking glycans 6.2.3 Pectins 6.2.4 Structural proteins 6.2.5 Aromatic substances 6.3 Cell growth and wall extensibility 6.3.1 The biophysics of growth underpins cell wall dynamics 6.3.2 The biochemical determinants of yield threshold and extensibility 6.4 Functional architecture revealed by mutation and transgenic approaches 6.4.1 Cellulose 6.4.2 The cellulose – crosslinking glycan network 6.4.3 Pectins 6.4.4 Structural proteins 6.5 The role of the cytoskeleton 6.5.1 Targeting of cell wall components 6.5.2 Mechanical connections 6.5.3 Sensing through the plasma membrane 6.6 Concluding remarks Acknowledgements References
148
148 149 150 150 151 152 153 153 154 155 156 157 161 161 162 163 163 166 169 169
176
176 177 177 178 180 181 182 183 183
184 185 186 186 187 188 189 189 191 194 196 196 196
Part 3
7
8
CONTENTS
The cytoskeleton and plant cell morphogenesis
Development of root hairs CLAIRE GRIERSON and TIJS KETELAAR
7.1 Introduction 7.2 Roles of the cytoskeleton in root hair morphogenesis 7.2.1 Microtubules 7.2.1.1 Microtubules affect root hair cell fate 7.2.1.2 Microtubules and root hair initiation 7.2.1.3 Microtubules control direction of root hair tip growth and prevent hairs from branching 7.2.1.4 Microtubules help to move the nucleus during tip growth in some species, but not in others 7.2.2 Actin filaments 7.2.2.1 Actin limits the size of the initiation site 7.2.2.2 Actin mediates tip growth by targeting vesicle delivery 7.2.2.3 Factin is essential for theArabidopsisnucleus to move during and after tip growth 7.2.2.4 Actin mediates cytoplasmic streaming in roots hairs 7.2.2.5 Actin at the end of tip growth 7.3 Mechanisms that regulate the cytoskeleton during root hair development 7.3.1 Mechanisms regulating root hair patterning 7.3.2 Mechanisms that regulate initiation 7.3.3 Mechanisms regulating tip growth 7.3.4 Mechanisms acting at the end of tip growth 7.4 The genetic network controlling root hair morphogenesis inArabidopsis 7.4.1 Genes involved in root hair patterning 7.4.2 Genes affecting initiation 7.4.3 Genes required for tip growth to be established 7.4.4 Genes required to sustain and direct tip growth 7.4.5 Genes involved in nuclear movement 7.4.6 Genes with roles at the end of tip growth 7.5 Concluding remarks Acknowledgements References
Signaling the cytoskeleton in pollen tube germination and growth RUI MALHÓ and LUÍSA CAMACHO
8.1 8.2 8.3
8.4 8.5 8.6 8.7 8.8 8.9 8.10
Introduction Different signaling pathways converge in the cytoskeleton The actin cytoskeleton is the major motor driving force in pollen tube growth Microtubules and microtubuleassociated proteins in pollen tube growth 2+ Ca , modulator of the cytoskeleton Signaling the cytoskeleton through phosphoinositides 2+ Calmodulin, a primary Ca sensor Protein kinases and phosphatases 1433 proteins The role of cyclic nucleotides
ix
205
207
207 210 210 210 211
211
214 214 214 215
216 216 216 217 217 219 221 223 223 223 223 231 232 233 233 233 234 234
240
240 240
242 244 246 247 249 251 252 253
x
9
10
CONTENTS
8.11 GTPases, the signaling switches 8.12 Transducons – the unity for signaling 8.13 Concluding remarks Acknowledgements References
Cytoskeletal requirements duringArabidopsistrichome development MARK BEILSTEIN and DAN SZYMANSKI
9.1 Introduction 9.2 Trichome morphogenesis 9.2.1Arabidopsis 9.2.2 Members of the Brassicaceae 9.3Arabidopsistrichome development 9.3.1 Initiation and leaf development 9.3.2 Genetics of initiation 9.4Arabidopsistrichome morphogenesis 9.4.1 Cytoskeletal inhibitors 9.4.2 Cytoskeletal organization in developing trichomes 9.4.2.1 Microtubules 9.4.2.2 Actin filaments 9.5 Genetics of trichome morphogenesis 9.5.1 Reduced branching mutants: microtubulebased functions 9.5.1.1ZWICHEL(ZWI) 9.5.1.2 Tubulin folding cofactors (TFCs) 9.5.1.3Arabidopsiskatanin small subunit (AtKSS) 9.5.1.4ANGUSTIFOLIA(AN) 9.5.1.5SPIKE1(SPK1) 9.5.2 The distorted trichome shape mutants: actinbased functions 9.6 Concluding remarks Acknowledgements References
Signaling and the cytoskeleton in guard cells PAULA DUQUE, JUANPABLO SÁNCHEZ and NAMHAI CHUA
10.1 10.2
10.3
Introduction Guard cell signaling 10.2.1 Cytosolic calcium 10.2.2 Cytosolic pH 10.2.3 Cyclic ADPribose 10.2.4 Inositol 1,4,5trisphosphate and other lipidderived second messengers 10.2.5 Protein kinases and phosphatases 10.2.6 Membrane trafficking 10.2.7 New key intermediates The cytoskeleton in guard cell function 10.3.1 (Re)organization of actin filaments 10.3.1.1 Cytosolic calcium 10.3.1.2 Protein kinases and phosphatases 10.3.1.3 Rho GTPases
254 256 257 258 258
265
265 265 265 267 268 268 269 270 272 273 273 274 276 276 276 277 279 281 282 283 284 285 285
290
290 291 292 294 294 295 296 297 298 300 300 302 304 304
CONTENTS
10.3.1.4 Cell volume regulation 10.3.1.5 Membrane trafficking 10.3.1.6 Other hints of signaling to the guard cell actin cytoskeleton 10.3.2 Involvement of microtubules 10.4 Conclusions and perspectives Acknowledgments References
Index
xi
305 306 307 308 310 312 312
318