Biologie cellulaire en 30 fiches

De
Publié par

30 fiches de 4 à 8 pages couvrant l'ensemble des notions utiles à un étudiant des deux premières années d'études supérieures (L1/L2, PCEM1, PH1). Chaque fiche comprend un rappel de cours suivi d'une ou deux applications dont la résolution détaillée est appuyée par des conseils méthodologiques.

Publié le : mercredi 16 septembre 2009
Lecture(s) : 78
Licence : Tous droits réservés
EAN13 : 9782100541935
Nombre de pages : 160
Voir plus Voir moins
Cette publication est uniquement disponible à l'achat
4
1 FICHE Les plans d’organisation cellulaire
I
La cellule, unité structurale et fonctionnelle du vivant
Tous les êtres vivants sont constitués dunités invisibles à lil nu : les cellules. Cette notion est relativement récente par rapport à lhistoire de la Biologie, car elle repose sur la mise au point doutils dobservation performants : les microscopes (lathéorie cellu lairea été énoncée en 1838). Les organismes unicellulaires ne sont donc pas directe ment accessibles à notre conscience, bien quils représentent le plus grand nombre despèces présentes sur la Terre et constituent la plus grande partie de la biodiversité actuelle, tandis que les êtres multicellulaires, parfois de très grande taille, font partie de notre monde visible et familier.  Plans dorganisation des cellules :au plan strictement structural, lensemble des êtres vivants actuels se répartit en deux grands groupes seulement :  lesProcaryotes, ou bactéries, au sens large, dont les cellules sont de très petite taille : ordre de grandeur = 1 µm, avec quelques exceptions, ne présentant pas ou peu decompartimentationau sein de leur cytoplasme (absence dorganites limités par des membranes),  lesEucaryotes, dont les cellules, de taille comprise entre 10 et 100 µm, en général, sont beaucoup plus volumineuses et présentent un cytoplasme haute ment structuré, contenant une grande diversité dorganites tels que : le noyau, les mitochondries, le réticulum endoplasmique  Unicellulaires et pluricellulaires :les Procaryotes sont en généralunicellulaires (bien quils donnent parfois des populations visibles à lil nu), tandis que les Eucaryo tes sont à la fois représentés par des organismes unicellulaires (les Protistes, très divers au plan phylogénétique), et des êtresmulticellulaires(les Animaux, les Végétaux verts et les Champignons ; cf. fiche 2). Chez ces derniers, à lexception des Champignons, la pluricellularité saccompagne toujours dunedifférenciation morphologique et fonctionnelle des cellules, qui se regroupent en tissus, formant des organes, euxmêmes organisés en appareils, dont lensemble constitue un organisme.
B i o l o g i e c e l l u l a i r e e n 3 0 f i c h e s
1
II Outils et méthodes de la cytologie Les biologistes disposent de deux types principaux doutils pour lobservation des cellules : lemicroscope photoniqueet lemicroscope électronique. Bien que basés sur un principe identique, à savoir la déviation dun flux de particules traversant lobjet à observer, ces instruments utilisent des particules différentes, respectivement les pho tons et les électrons.
 Le microscope photoniqueou à lumière : la lumière traversant lobjet (on parle dobservation en transmission) est déviée par deux systèmes successifs de lentilles en verre appelés « objectifs » et « oculaires », avant de former une image agrandie sur notre rétine (ou tout système de capture dune image). Lalimite de résolutionde cet appareil (la plus petite distance entre deux points de lobjet vus de façon distincte) est au mieux de 0,25 µm, ce qui permet de distinguer à peine la plupart des bactéries ; on rappelle que cette limite, pour lil nu, est de 100 µm environ.
 Le microscope électronique à transmission :le flux délectrons, accéléré par une très haute tension, est dévié par des lentilles électromagnétiques au sein dune enceinte dans laquelle un vide très poussé a été réalisé. Ceci est indispensable pour que les élec trons ne soient ni ralentis ni déviés par des particules gazeuses ; une première consé quence est que, à la différence du microscope photonique,des objets vivants ne peuvent pas y être observés. La limite de résolution de cet appareil (0,1 nm) est très inférieure à celle du microscope photonique, ce qui explique son intérêt.
 La réalisation de coupes fines :les objets à observer sont le plus souvent massifs, de grande taille, et non transparents à la lumière ou aux électrons, ce qui implique la réali sation de coupes fines (0,55 µm) ou ultrafines (5080 nm) selon le type de microscope utilisé. Cette technique nécessite que le matériel biologique soitfixé(tué par un mélange de composés chimiques ne modifiant pas les structures cellulaires), puis imprégnédune substance durcissant léchantillon (étape dinclusion en paraffine ou en résine), afin dêtredébité en tranchesles plus fines possibles (étape de micro ou ultramicrotomie). Une dernière étape de coloration (par de vrais colorants pour la microscopie photonique, ou par des composés renforçant les contrastes en microscopie électronique) doit être réalisée avant toute observation.
 Dautres types de microscopes et dautres protocoles dobservation existent, tant dans le domaine de la microscopie photonique que dans celui de la microscopie électronique ; ils seront présentés dans les chapitres suivants. Il sagit, en particulier, du microscope photonique à fluorescence (cf. fiche 8) et du microscope électronique à balayage (cf. fiche 5) ; les protocoles de cryofracture, dimmunocytochimie et de colo ration négative seront également décrits dans les fiches 6, 7 et 11.
© Dunod  La photocopie non autorisée est un délit.
F I C H E 1  d  o r g a n i s a t i o n c e l l u l a i r eL e s p l a n s
5
6
C e l l u l e s p r o c a r y o t i q u e s e t e u c a r y o t i q u e s
Voici des schémas et des photos de différents types de cellules. Avec laide des barres déchelle, calculez leurs dimensions exactes et identifiez celles que vous considérez comme procaryotiques ou eucaryotiques ; parmi ces dernières, savezvous distinguer les cellules animales des cellules végétales ? Justifiez vos réponses.
S o l u t i o n Les cellules 1 et 4 sont detrès petite taille(respectivement 1,5 µm et 3,4 µm) et visi blement non ou peu compartimentées ; il sagit deProcaryotes. Les cellules 2 et 3 sont detaille bien supérieure(respectivement 80 µm et 14 µm) et possèdent de nombreux organites, dont le noyau, volumineux et très reconnaissable ; il sagit donc dEucaryo tes. La cellule 2, qui possède de grandes vacuoles, des chloroplastes et une paroi épaisse, est une cellule végétale ; la cellule 3 est donc de type animal. V o l u m e s c e l l u l a i r e s c o m p a r é s
Une cellule bactérienne de type « coque », une cellule animale de type hépatocyte (cellule du foie) et une cellule de parenchyme végétal sont comparées du point de vue de leurs volumes. Toutes les trois sont sphériques, et leurs diamètres respectifs sont les suivants : 2 µm, 20 µm et 100 µm.
B i o l o g i e c e l l u l a i r e e n 3 0 f i c h e s
1.Calculer le volume de la cellule bactérienne et prévoir, sans faire les calculs directs, les rapports existant entre les volumes des deux autres types de cellules et celui de cette bactérie. 2.Prévoir également, sans faire les calculs directs, lévolution du rapport Surface cel lulaire/Volume cellulaire quand on passe dun type de cellule à lautre, et en tirer les conséquences physiologiques concernant les liens entre échanges avec le milieu et métabolisme cellulaire. 2 3 On donne : surface dune sphère = 4πr ; volume dune sphère = 4/3πr .
1
S o l u t i o n 3 1.Le volume de labactérie. Le rayon de la(rayon = 1 µm) est de 4,18 µm cellule ani maleétant 10 fois plus grand que celui de la bactérie, son volume est 1 000 fois supé 3 rieur (on élève 10 au cube) et vaut donc 4 180 µm . Celui de lacellule végétaleétant 50 fois plus grand, son volume est 125 000 fois supérieur à celui de la bactérie, soit un 3 volume de 522 500 µm . Ces calculs simples montrent que les cellules eucaryotiques sont beaucoup plus volumineuses que les cellules procaryotiques ; ceci explique aisé ment pourquoi les premières peuvent faire lobjet dunecompartimentation et/ou dunedifférenciationpoussées, absentes chez les dernières. 2.Sans avoir à faire de calculs, on constate que la surface est une fonction du carré de la dimension de la cellule, alors que son volume est une fonction du cube de cette même dimension ;plus les cellules sont grosses et plus le rapport S/V diminue. Ceci a des conséquences importantes pour lactivité cellulaire, car cest à travers la surface que se font les nécessaires échanges nutritifs avec le milieu, alors que lactivité métabolique concerne lensemble du volume cellulaire. Il est admis que le passage évolutif du plan dorganisation procaryotique au plan euca ryotique, avec une grande augmentation de la taille des cellules, na pu être réalisé quau prix dunecompartimentation interne poussée et de lacquisition/invention dorganites diversifiés prenant en charge des activités remplies par la membrane plas mique des Procaryotes. Voir la notion de «théorie endosymbiotique»: cf. fiche 20. C o m b i e n d e c e l l u l e s d a n s u n e c o l o n i e b a c t é r i e n n e ?
Une colonie bactérienne a été obtenue sur un milieu de culture gélosé par multiplica tion dune seule cellule initialement déposée à sa surface (même espèce que celle étu diée dans lexercice précédent). Cette colonie a une forme lenticulaire et mesure 4 mm de diamètre sur 1 mm de hauteur ; on admettra que son volume est approxima tivement égal à la moitié du volume dun cylindre de mêmes dimensions.
© Dunod  La photocopie non autorisée est un délit.
F I C H E 1c e l l u l a i r ed  o r g a n i s a t i o n p l a n s   L e s
7
8
1.Si lon admet aussi que la moitié du volume de cette colonie est représenté par de leau (ou de la solution nutritive) remplissant les espaces intercellulaires, pouvez vous calculer le nombre de cellules contenues dans cette colonie ? 2.Cette colonie ayant été obtenue après un temps de culture de 36 h, quel est le temps de génération (durée de la période entre 2 divisions) chez cette bactérie ? 3.Quelle serait la longueur théorique dun filament obtenu en mettant bout à bout toutes les cellules de cette colonie, et seriezvous capable de le voir à lil nu ? 2 9 On donne : surface dun cercle =πr ; est très voisine de 500 (512), etla valeur de 2 10 celle de 2 est très voisine de 1 000 (1 024).
S o l u t i o n 1.Le volume total de la colonie, équivalent au demivolume du cylindre, est donc égal 3 3 à : 3,14×4×1/2 = 12,56/2 mm , soit 6,28 mm . Si les cellules seules représentent la 3 3 moitié de ce volume, on obtient la valeur de 3,14 mm . Sachant que 1 mm représente 9 3 3 10 µm et que le volume dune cellule bactérienne est de 4,18 µm , on calcule un effec 8 tif de7,5pour cette seule colonie10 cellules . Cette valeur est telle que, dans seule ment 10 colonies de cette taille, il y a plus de cellules bactériennes que dêtres humains sur notre planète ! n 2.La croissance dune population de bactéries suit une progression exponentielle : 2 , n étant le nombre de générations (divisions). On peut aisément calculer ce nombre 10 8 sachant que 2 = environ 1 000 ; la valeur de 7,5décompose donc en10 se 9 750×1 000×, on obtient :1 000. Si on considère que 750 est légèrement supérieur à 2 9 10 10 29 2×2×; il a donc fallusoit 2 2 , 29 générationspour passer de 1 cellule à la colo nie finale, ce qui a été réalisé en 36 h. Une génération dure donc 36/29 h = 1,24 h, ce qui équivaut à 75 minutes environ. La rapidité de division des bactéries est impression nante et, en milieu de culture liquide (plus favorable à la croissance),les temps de géné ration atteignent 20 minutes. Ces simples remarques permettent de comprendre aisément pourquoi les microorga nismes en général, et les bactéries en particulier, ont constitué un moyen irremplaçable de recherche de mutants (par définition extrêmement rares) et donc détudes génétiques. Les développements rapides de la Génétique et de la Biologie Moléculaire, dans la e deuxième moitié du XX siècle, sont essentiellement dus à leur utilisation (Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa). 8 3. La longueur du filament obtenu avec les 7,5:(diamètre individuel 10 cellules 9 2 µm), est de 1,5soit10 µm, 1,5 km! Et pourtant, un tel filament, très long mais très fin,ne pourrait être observé à lil nu, car sa limite de résolution est de 100 µm.
B i o l o g i e c e l l u l a i r e e n 3 0 f i c h e s
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.