//img.uscri.be/pth/d14e329808c02e418d83a11cc54b66623486b37d
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 65,83 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Fundamentals of Physical Volcanology

De
256 pages
Fundamentals of Physical Volcanology is a comprehensive overview of the processes that control when and how volcanoes erupt. Understanding these processes involves bringing together ideas from a number of disciplines, including branches of geology, such as petrology and geochemistry; and aspects of physics, such as fluid dynamics and thermodynamics.


This book explains in accessible terms how different areas of science have been combined to reach our current level of knowledge of volcanic systems. It includes an introduction to eruption types, an outline of the development of physical volcanology, a comprehensive overview of subsurface processes, eruption mechanisms, the nature of volcanic eruptions and their products, and a review of how volcanoes affect the environment.

Fundamentals of Physical Volcanology is essential reading for undergraduate students in earth science.

Voir plus Voir moins
Contents
Preface Acknowledgments Dedication Glossary
1. Volcanic systems 1.1 Introduction 1.2 Styles of volcanic eruptions 1.3 Volcanic systems 1.4 The structure and aims of this book 1.5 Further reading 1.6 Questions to think about
2.
Magma generation and segregation 2.1 Introduction 2.2 Rock-melting mechanisms 2.3 Volcanism and plate tectonics 2.4 Melting and melt segregation in the mantle 2.5 Summary 2.6 Furthrerading 2.7 Questions to think about
3. Magma migration 3.1 Introduction 3.2 Diapiric rise of melt 3.3 The change from diapir rise to dike formation 3.4 Dike propagation 3.5 Trapping of dikes 3.6 Consequences of dike trapping 3.7 Summary 3.8 Further reading 3.9 Questions to think about
ix x xii xiii
1 1 2 14 15 15 17
18 18 18 19 26 29 30 30
31 31 31 32 33 35 39 40 42 42
4.
vi
C O N T E N T S
Magma storage 4.1 Introduction 4.2 Evidence for magma storage within the crust 4.3 Formation and growth of magma chambers 4.4 Magma chambers and their impact on volcanic systems 4.5 Summary 4.6 Further reading 4.7 Questions to think about
5. The role of volatiles 5.1 Introduction 5.2 Volatiles in magma 5.3 The solubility of volatiles in magma 5.4 Bubble nucleation 5.5 Bubble growth 5.6 Magma fragmentation and the influence of volatiles on eruption styles 5.7 Summary 5.8 Further reading 5.9 Questions to think about
6. Steady explosive eruptions 6.1 Introduction 6.2 Influence of gas bubbles prior to magma fragmentation 6.3 Acceleration of the gas–magma mixture 6.4 Controls on exit velocity 6.5 Eruption plumes in steady eruptions 6.6 Fallout of clasts from eruption plumes 6.7 Unstable eruption columns 6.8 Summary 6.9 Further reading 6.10 Questions to think about
7. Transient volcanic eruptions 7.1 Introduction 7.2 Magmatic explosions 7.3 Transient eruptions involving external water 7.4 Summary 7.5 Further reading 7.6 Questions to think about
8.
Pyroclastic falls and pyroclastic density currents 8.1 Introduction 8.2 Fallout of clasts from eruption columns 8.3 The application of eruption column models 8.4 Pyroclastic density currents and their deposits 8.5 Summary 8.6 Further reading 8.7 Questions to think about
43 43 43 53 58 62 62 63
64 64 64 65 67 68 73 75 76 76
77 77 77 78 80 82 86 88 91 92 93
94 94 94 100 103 104 104
105 105 105 110 115 121 124 125
9.
10.
11.
12.
Lava flows 9.1 Introduction 9.2 Origin of lava flows 9.3 Types of lava flow 9.4 Lava flow rheology 9.5 Rheological control of lava flow geometry 9.6 Lava flow motion 9.7 Lengths of lava flows 9.8 Surface textures of lava flows 9.9 Effects of ground slope and lava viscosity 9.10 Summary 9.11 Further reading 9.12 Questions to think about
Eruption styles, scales, and frequencies 10.1 Introduction 10.2 Chemical composition and styles of volcanic activity 10.3 Chemical composition and effusive eruptions 10.4 Chemical composition and explosive eruptions 10.5 Summary of compositional controls on eruption character 10.6 Magnitudes and frequencies of volcanic eruptions 10.7 Elastic and inelastic eruptions 10.8 Eruptions of exceptional magnitude 10.9 Summary 10.10 Further reading 10.11 Questions to think about
Volcanic hazards and volcano monitoring 11.1 Introduction 11.2 Types of volcanic hazard 11.3 Hazard assessment 11.4 Monitoring volcanoes and short-term eruption prediction 11.5 Hazard mitigation 11.6 Summary 11.7 Further reading 11.8 Questions to think about
Volcanoes and climate 12.1 Introduction 12.2 Evidence for the impact of volcanic eruptions on climate 12.3 Satellite monitoring of climate change after volcanic eruptions 12.4 The effects of volcanic eruptions on climate 12.5 Volcanoes and mass extinctions 12.6 Summary 12.7 Further reading 12.8 Questions to think about
C O N T E N T S
vii
126 126 127 128 132 133 135 136 137 140 141 142 143
144 144 144 147 148 152 153 158 160 163 164 164
165 165 165 172 173 176 177 177 178
179 179 179 181 182 186 187 188 189
viii
13.
C O N T E N T S
Volcanism on other planets 13.1 Introduction 13.2 Volcanically active bodies in the Solar System 13.3 The effects of environmental conditions on volcanic processes 13.4 The Moon 13.5 Mars 13.6 Venus 13.7 Mercury 13.8 Io 13.9 Europa 13.10 Differentiated asteroids 13.11 Summary 13.12 Further reading 13.13 Questions to ahink about
Answers to questions Index
190 190 191 192 194 197 202 205 206 209 210 211 211 212
213 219