Micro et nano-électronique

De
Publié par

Cet ouvrage présente de façon exhaustive l'art de la miniaturisation en électronique intégrée, en étudiant l'ensemble des aspects physiques, technologiques et architecturaux de la micro-électronique et de la nano-électronique. Les bases de ces disciplines ainsi que les progrès les plus récents sont exposés : principes de fonctionnement des composants électroniques ; transistor MOS et transistor bipolaire ; procédés de fabrication de l'industrie micro-électronique ; fonctions analogiques et numériques de base ; circuits intégrés complexes, processeurs et mémoires ; composants nanométriques et architectures associées (nanofils, nanotubes...) ; perspectives d'utilisation, circuits électroniques de demain. Ce livre s'adresse principalement aux ingénieurs et chercheurs en électronique, ainsi qu'aux enseignants et étudiants du domaine.

Publié le : vendredi 10 mars 2006
Lecture(s) : 112
Licence : Tous droits réservés
EAN13 : 9782100528394
Nombre de pages : 416
Voir plus Voir moins
Cette publication est uniquement disponible à l'achat
4
MICROETNANO-ÉLECTRONIQUE
1.1La part de l’électronique dans les produits industriels La part prise par l’électronique dans les produits industriels ne fait que croître d’année en année et apporte le plus souvent aux produits un facteur de différentiation fort. Pensons à l’apport de l’électronique dans l’automobile, la photographie, les activités de gestion des entre prises, la com-munication entre personnes… Les produits sont très divers et pourtant trois fonctions principales sont réalisées par les systèmes électroniques dans les produits : • transporter des données d’un point à un autre ; • effectuer des calculs à la demande de l’utilisateur ; • opérer un contrôle-commande. Trois exemples aident à comprendre cette classification. Un système de télévision permet de trans-mettre une image du studio d’enregistrement à l’écran du téléspectateur. L’écolier qui effectue une opération à l’aide d’une calculette utilise l’électronique comme technique de calcul. Les circuits dans une machine à laver le linge reçoivent des données et commandent des actions (chauffage, ouverture de vannes, démarrage de moteur). Toutes ces fonctions, et c’est la raison du succès de l’électronique, peuvent se réaliser avec un seul composant : le transistor. Le transistor est un dispositif qui permet de commander un courant à l’aide d’une tension appliquée. Il est analogue au robinet qui permet de régler le flux d’un liquide. Quand l’opération est continue, on parle d’électronique analogique. Quand l’opération est du tou t ou rien, on parle d’électronique numérique. Le courant passe ou ne passe pas. L’électronique numé-rique qui ne connaît que deux états est donc bien adaptée au système binaire de numération. Notons qu’une électronique à plusieurs états serait peut-être mieux adaptée à un autre système de numération. Le transistor n’est pas le premier composant utilisé pour faire des calculs. Les premiers ont été les dispositifs mécaniques qui ont par exemple permis à Pascal de construire une machine à calculer. Les métiers à tisser réalisaient avec des systèmes mécaniques des opérations de contrôle-commande sophistiquées. Ils ont d’ailleurs inspiré l’inventeur Charles Babbage qui a imaginé le premier ordi-nateur faisant usage d’un programme. Cet ordinateur n’a cependant pas pu être réalisé par l’inven-teur. Le relais électromécanique s’est imposé comme un composant de choix dans les applications électriques. Il a également été utilisé comme une sorte de transistor en mode logique. Enfin, le tube à vide a été inventé puis utilisé aussi bien en analogique qu’en logique. Le premier ordinateur appelé ENIAC comportait des milliers de tubes de type triode pour effectuer quelques calculs. Ensuite, le transistor est apparu et a remplacé tous les dispositifs précédents. Le transistor est particulière-ment intéressant car il est de taille réduite et travaille avec des tensions électriques faibles. Lafigure 1.1montre la place de l’électronique dans tous les domaines de la vie quotidienne : au travail, à la maison, dans les transports, dans un centre de soins, dans un lieu de loisirs. La deuxième invention déterminante est celle du circuit intégré. Un système électronique se réalise en interconnectant des milliers et souvent des millions de transistors entre eux. L’idée du circ uit intégré est de réaliser tous les transistors dans un même morceau de matériau et de réaliser les interconnexions également dans cet élément appelé puce. Cette idée est attribuée à Jack Kilby en 1958. Elle permet véritablement de réaliser des systèmes électroniques à faible coût puisque les opé-rations de fabrication des transistors et des interconnexions peuvent être automatisées.Ajoutons à cela qu’il est possible de fabriquer quelques milliers de circuits identiques en même temps, et on comprend facilement pourquoi des objets aussi complexes peuvent être aussi bon marché. La fabrication collective des circuits intégrés est représentée de manière simplifiéefigure 1.2.
CHAPITRE1 – DELAMICROÀLANANO-ÉLECTRONIQUE
Maison
Wafer de base
Loisirs
Travail
Des transistors dans tous ces produits
Soins
Transports
Figure 1.1 – Des transistors dans tous ces produits.
Fabrication collective des transistors
Fabrication collective des interconnexions
Figure 1.2 – Fabrication collective des circuits intégrés.
Découpe des puces individuelles
Le matériau de base se présente sous forme d’un disque de semi-conducteur. Nous expliquerons par la suite pourquoi le matériau de base n’est ni un isolant ni un conducteur. Le silicium s’est imposé comme le meilleur choix. Il est en effet abondant comme matière première puisque fait à partir de sable. D’autre part, son oxyde naturel, le dioxyde de silicium est stable. Le disque de silicium appelé wafer est alors traité collectivement. Tous les circuits et tous les transis-tors des circuits sont réalisés en même temps. Il faut plusieurs étapes dans la fabrication qui sera décrite en détail dans le chapitre 6. Ces étapes sont toutefois mises en œuvre sur tous les transistors à la fois. Les interconnexions entre transistors sont réalisées de la même manière.
© Dunod. La photocopie non autorisée est un délit.
5
6
MICROETNANO-ÉLECTRONIQUE
Pour être complet, il faut ajouter que quelques composants supplémentaires doivent également être fabriqués collectivement car ils sont nécessaires au fonctionnement des circuits électroniques. Ce sont les résistances, les condensateurs et les selfs. Leur nombre est cependant faible en proportion. On comprend alors que le coût de fabrication d’un transistor diminue quand la taille du transistor diminue et quand la taille du wafer augmente. Le coût d’une opération sur un wafer est en effet relativement constant. Cette évolution est manifeste sur lafigure 1.3qui représente l’évolution du coût de production d’un transistor en micro-électronique.
100 000
1973
5 000
1977
Le coût de 1 million de transistors en euros
500
1981
100
1984
30
1987
5
1988
0,5
1995
Figure 1.3 – Diminution du coût d’un transistor.
0,05
2000
Cette décroissance exponentielle du coût de production est appelée loi de Moore.
0,005
2005
1.2La miniaturisation et la loi de Moore La diminution du coût d’un transistor ou d’une fonction est donc basée sur la réduction de taille dutransistor.GordonMoore,ingénieurchezIntel,aénoncécetteévolutiondelamanièresuivante: le nombre de transistors intégrés sur une puce double tous les 18 mois. Cette déclaration n’est pas une loi mais une simple observation et rien ne peut réellement expliquer la période de 18 mois. Lafigure 1.4montre la différence entre la règle de Moore et ce qui s’est véritablement passé dans l’industrie micro-électronique. La loi de Moore s’est finalement appliquée avec une constante de temps plus courte que celle ima-ginée dans les prévisions initiales. Le nœud de la technologieλest défini comme la demi-distance la plus petite entre deux lignes conductrices. Lafigure 1.5représente un transistor dans un circuit intégré. Le transistor MOS est formé de deux zones conductrices appelées source et drain. Une électrode appelée grille est placée au-dessus du dispositif et contrôle le courant qui circule de la source vers le drain. La distanceLentre source et drain est très faible et voisine du nœud de la technologie. Elle est appelée longueur du canal. La largeur du dispositifWest petite mais supérieure à la longueur, de deux à quelques centaines de foisλ. Elle est choisie pour procurer au transistor des propriétés électriques satisfaisantes et est donc plus élevée que la valeur minimale autorisée par la technologie.
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.