Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 143,75 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Fundamentals of Power Electronics. Second Edition

De
0 page

Fundamentals of Power Electronics, Second Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material.
Improved features of this new edition include:
A new chapter on input filters, showing how to design single and multiple section filters;
Major revisions of material on averaged switch modeling, low-harmonic rectifiers, and the chapter on AC modeling of the discontinuous conduction mode;
New material on soft switching, active-clamp snubbers, zero-voltage transition full-bridge converter, and auxiliary resonant commutated pole. Also, new sections on design of multiple-winding magnetic and resonant inverter design;
Additional appendices on Computer Simulation of Converters using averaged switch modeling, and Middlebrook's Extra Element Theorem, including four tutorial examples; and
Expanded treatment of current programmed control with complete results for basic converters, and much more.
This edition includes many new examples, illustrations, and exercises to guide students and professionals through the intricacies of power electronics design.
Fundamentals of Power Electronics, Second Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analog and digital electronics.

Voir plus Voir moins

Vous aimerez aussi

Contents
Preface 1Introduction 1.1Introduction to Power Processing 1.2Several Applications of Power Electronics 1.3Power ElectronicsElements of References IConverters in Equilibrium 2 Principles of Steady State Converter Analysis 2.1Introduction 2.2Capacitor Charge Balance, and the SmallRippleInductor VoltSecond Balance, Approximation 2.3Boost Converter Example 2.4uk Converter Example 2.5Estimating the Output Voltage Ripple in Converters Containing TwoPole LowPass Filters 2.6Summary of Key Points References Problems 3SteadyState Equivalent Circuit Modeling, Losses, and Efficiency 3.1The DC Transformer Model 3.2Inclusion of Inductor Copper Loss 3.3Construction of Equivalent Circuit Model
xix 1 1 7 9
11 13 13
15 22 27
31 34 34 35 39 39 42 45
viii
4
5
6
Contents
3.3.1Inductor Voltage Equation 3.3.2Capacitor Current Equation 3.3.3Complete Circuit Model 3.3.4Efficiency 3.4How to Obtain the Input Port of the Model 3.5Losses in the BoostExample: Inclusion of Semiconductor Conduction Converter Model 3.6Summary of Key Points References Problems Switch Realization 4.1Switch Applications 4.1.1SingleQuadrant Switches 4.1.2CurrentBidirectional TwoQuadrant Switches 4.1.3VoltageBidirectional TwoQuadrant Switches 4.1.4FourQuadrant Switches 4.1.5Synchronous Rectifiers 4.2A Brief Survey of Power Semiconductor Devices 4.2.1Power Diodes 4.2.2MetalOxideSemiconductor FieldEffect Transistor (MOSFET) 4.2.3Bipolar Junction Transistor (BJT) 4.2.4Insulated Gate Bipolar Transistor (IGBT) 4.2.5Thyristors (SCR, GTO, MCT) 4.3Switching Loss 4.3.1Transistor Switching with Clamped Inductive Load 4.3.2Diode Recovered Charge 4.3.3Device Capacitances, and Leakage, Package, and Stray Inductances 4.3.4Efficiency vs. Switching Frequency 4.4Summary of Key Points References Problems The Discontinuous Conduction Mode
5.1Origin of the Discontinuous Conduction Mode, and Mode Boundary 5.2Analysis of the Conversion RatioM(D,K) 5.3Boost Converter Example 5.4Summary of Results and Key Points Problems
Converter Circuits
6.1
Circuit Manipulations 6.1.1Inversion of Source and Load 6.1.2Cascade Connection of Converters 6.1.3Rotation of ThreeTerminal Cell
46 46 47 48 50
52 56 56 57 63 65 65 67 71 72 73 74 75 78 81 86 88 92 93 96 98 100 101 102 103 107 108 112 117 124 126 131 132 132 134 137
II 7
6.1.4 Differential Connection of the Load 6.2A Short List of Converters 6.3Transformer Isolation 6.3.1FullBridge and HalfBridge Isolated Buck Converters 6.3.2Forward Converter 6.3.3PushPull Isolated Buck Converter 6.3.4Flyback Converter 6.3.5BoostDerived Isolated Converters 6.3.6ConverterIsolated Versions of the SEPIC and the 6.4Converter Evaluation and Design 6.4.1Switch Stress and Utilization 6.4.2Design Using Computer Spreadsheet 6.5Summary of Key Points References Problems Converter Dynamics and Control
Contents
AC Equivalent Circuit Modeling 7.1Introduction 7.2The Basic AC Modeling Approach 7.2.1Averaging the Inductor Waveforms 7.2.2Discussion of the Averaging Approximation 7.2.3WaveformsAveraging the Capacitor 7.2.4The Average Input Current 7.2.5Perturbation and Linearization 7.2.6Construction of the SmallSignal Equivalent Circuit Model 7.2.7Discussion of the Perturbation and Linearization Step 7.2.8Results for Several Basic Converters 7.2.9Example: A Nonideal Flyback Converter 7.3StateSpace Averaging 7.3.1The State Equations of a Network 7.3.2The Basic StateSpace Averaged Model 7.3.3Discussion of the StateSpace Averaging Result 7.3.4Example: StateSpace Averaging of a Nonideal Buck–Boost Converter 7.4Circuit Averaging and Averaged Switch Modeling 7.4.1Obtaining a TimeInvariant Circuit 7.4.2Circuit Averaging 7.4.3Perturbation and Linearization 7.4.4Switch Networks 7.4.5Example: Averaged Switch Modeling of Conduction Losses 7.4.6Example: Averaged Switch Modeling of Switching Losses 7.5The Canonical Circuit Model 7.5.1Development of the Canonical Circuit Model
ix
138 143 146 149 154 159 161 165 168 171 171 174 177 177 179
185 187 187 192 193 194 196 197 197 201 202 204 204 213 213 216 217 221 226 228 229 232 235 242 244 247 248
x
8
9
Contents
7.5.2 Example: Manipulation of the Buck–Boost Converter Model into Canonical Form 7.5.3 Canonical Circuit Parameter Values for Some Common Converters 7.6Modeling the PulseWidth Modulator 7.7Summary of Key Points References Problems Converter Transfer Functions
8.1Review of Bode Plots 8.1.1Single Pole Response 8.1.2Single Zero Response 8.1.3Right HalfPlane Zero 8.1.4Frequency Inversion 8.1.5Combinations 8.1.6Quadratic Pole Response: Resonance 8.1.7The LowQ Approximation 8.1.8Approximate Roots of an ArbitraryDegree Polynomial 8.2Analysis of Converter Transfer Functions 8.2.1 Example: Transfer Functions of the Buck–Boost Converter 8.2.2 Transfer Functions of Some Basic CCM Converters 8.2.3 Physical Origins of the RHP Zero in Converters 8.3Graphical Construction of Impedances and Transfer Functions 8.3.1 Series Impedances: Addition of Asymptotes 8.3.2 Series Resonant Circuit Example 8.3.3 Parallel Impedances: Inverse Addition of Asymptotes 8.3.4 Parallel Resonant Circuit Example 8.3.5 Voltage Divider Transfer Functions: Division of Asymptotes 8.4Graphical Construction of Converter Transfer Functions 8.5Measurement of AC Transfer Functions and Impedances 8.6Summary of Key Points References Problems Controller Design 9.1Introduction 9.2Effect of Negative Feedback on the Network Transfer Functions 9.2.1 Feedback Reduces the Transfer Functions from Disturbances to the Output 9.2.2 Feedback Causes the Transfer Function from the Reference Input to the Output to be Insensitive to Variations in the Gains in the Forward Path of the Loop 9.3Construction of the Important Quantities 1/(1 +T) andT/(1 +T) and the ClosedLoop Transfer Functions 9.4Stability
250 252 253 256 257 258 265 267 269 275 276 277 278 282 287 289 293 294 300 300 302 303 305 308 309 311 313 317 321 322 322 331 331 334
335
337
337 340
10
11
Contents
9.4.1The Phase Margin Test 9.4.2The Relationship Between Phase Margin and ClosedLoop Damping Factor 9.4.3Transient Response vs. Damping Factor 9.5Regulator Design 9.5.1Lead (PD)Compensator 9.5.2Lag (PI) Compensator 9.5.3Combined (PID) Compensator 9.5.4Design Example 9.6Loop GainsMeasurement of 9.6.1Voltage Injection 9.6.2Current Injection 9.6.3Measurement of Unstable Systems 9.7Summary of Key Points References Problems Input Filter Design 10.1Introduction 10.1.1 Conducted EMI 10.1.2 The Input Filter Design Problem 10.2Effect of an Input Filter on Converter Transfer Functions 10.2.1Discussion 10.2.2Impedance Inequalities 10.3Buck Converter Example 10.3.1Effect of Undamped Input Filter 10.3.2Damping the Input Filter 10.4Design of a Damped Input Filter 10.4.1Parallel Damping 10.4.2Parallel Damping 10.4.3Series Damping 10.4.4Cascading Filter Sections 10.4.5Example: Two Stage Input Filter 10.5Summary of Key Points References Problems AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode 11.1DCM Averaged Switch Model 11.2SmallSignal AC Modeling of the DCM Switch Network 11.2.1 Example: ControltoOutput Frequency Response of a DCM Boost Converter 11.2.2 Example: Controltooutput Frequency Responses of a CCM/DCM SEPIC
xi
341
342 346 347 348 351 353 354 362 364 367 368 369 369 369 377 377 377 379 381 382 384 385 385 391 392 395 396 398 398 400 403 405 406 409 410 420
428
429
xii
12
III 13
Contents
11.3HighFrequency Dynamics of Converters in DCM 11.4Summary of Key Points References Problems Current Programmed Control
12.1Oscillation forD >0.5 12.2A Simple FirstOrder Model 12.2.1 Simple Model via Algebraic Approach: Buck–Boost Example 12.2.2 Averaged Switch Modeling 12.3A More Accurate Model 12.3.1 CurrentProgrammed Controller Model 12.3.2Solution of the CPM Transfer Functions 12.3.3Discussion 12.3.4CurrentProgrammed Transfer Functions of the CCM Buck Converter 12.3.5Results for Basic Converters 12.3.6CurrentProgrammed ControlQuantitative Effects of on the Converter Transfer Functions 12.4Discontinuous Conduction Mode 12.5Summary of Key Points References Problems Magnetics Basic Magnetics Theory 13.1Review of Basic Magnetics 13.1.1Basic Relationships 13.1.2Magnetic Circuits 13.2Transformer Modeling 13.2.1The Ideal Transformer 13.2.2 The Magnetizing Inductance 13.2.3Leakage Inductances 13.3Loss Mechanisms in Magnetic Devices 13.3.1Core Loss 13.3.2 LowFrequency Copper Loss 13.4Eddy Currents in Winding Conductors 13.4.1Introduction to the Skin and Proximity Effects 13.4.2Leakage Flux in Windings 13.4.3 Foil Windings and Layers 13.4.4Power Loss in a Layer 13.4.5Example: Power Loss in a Transformer Winding 13.4.6Interleaving the Windings 13.4.7PWM Waveform Harmonics
431 434 434 435 439 441 449 450 454 459 459 462 465 466 469
471 473 480 481 482
489 491 491 491 498 501 502 502 504 506 506 508 508 508 512 514 515 518 520 522
14
15
13.5Several Types of Magnetic Devices, TheirB–HLoops, and Core vs. Copper Loss 13.5.1 Filter Inductor 13.5.2AC Inductor 13.5.3Transformer 13.5.4Coupled Inductor 13.5.5Flyback Transformer 13.6Summary of Key Points References Problems Inductor Design 14.1Filter Inductor Design Constraints 14.1.1Maximum Flux Density 14.1.2Inductance 14.1.3 Winding Area 14.1.4Winding Resistance 14.1.5 The Core Geometrical Constant 14.2A StepbyStep Procedure 14.3MultipleWinding Magnetics Design via the Method 14.3.1Window Area Allocation 14.3.2Coupled Inductor Design Constraints 14.3.3Design Procedure 14.4Examples 14.4.1Coupled Inductor for a TwoOutput Forward Converter 14.4.2TransformerCCM Flyback 14.5Summary of Key Points References Problems Transformer Design 15.1Transformer Design: Basic Constraints 15.1.1Core Loss 15.1.2 Flux Density 15.1.3Copper Loss 15.1.4 Total Power Loss vs. 15.1.5Optimum Flux Density 15.2A StepbyStep Transformer Design Procedure 15.3Examples 15.3.1 Example 1: SingleOutput Isolated Converter 15.3.2Example 2: MultipleOutput FullBridge Buck Converter 15.4AC Inductor Design 15.4.1Outline of Derivation 15.4.2 StepbyStep AC Inductor Design Procedure
Contents
xiii
525 525 527 528 529 530 531 532 533 539 539 541 542 542 543 543 544 545 545 550 552 554 554 557 562 562 563 565 565 566 566 567 568 569 570 573 573 576 580 580 582
xiv
IV 16
17
18
Contents
15.5Summary References Problems
Modern Rectifiers and Power System Harmonics
Power and Harmonics in Nonsinusoidal Systems
16.1Average Power 16.2RootMeanSquare (RMS) Value of a Waveform 16.3Power Factor 16.3.1 Linear Resistive Load, Nonsinusoidal Voltage 16.3.2 Nonlinear Dynamic Load, Sinusoidal Voltage 16.4Power Phasors in Sinusoidal Systems 16.5Harmonic Currents in ThreePhase Systems 16.5.1 Harmonic Currents in ThreePhase FourWire Networks 16.5.2Harmonic Currents in ThreePhase ThreeWire Networks 16.5.3Harmonic Current Flow in Power Factor Correction Capacitors 16.6AC Line Current Harmonic Standards 16.6.1International Electrotechnical Commission Standard 1000 16.6.2IEEE/ANSI Standard 519 Bibliography Problems
LineCommutated Rectifiers
17.1The SinglePhase FullWave Rectifier 17.1.1 Continuous Conduction Mode 17.1.2 Discontinuous Conduction Mode 17.1.3Behavior when Cis Large 17.1.4 MinimizingTHDwhenCis Small 17.2The ThreePhase Bridge Rectifier 17.2.1 Continuous Conduction Mode 17.2.2Discontinuous Conduction Mode 17.3Phase Control 17.3.1 Inverter Mode 17.3.2Harmonics and Power Factor 17.3.3Commutation 17.4Harmonic Trap Filters 17.5Transformer Connections 17.6Summary References Problems PulseWidth Modulated Rectifiers 18.1Properties of the Ideal Rectifier
583 583 584
587 589 590 593 594 594 595 598 599 599 601 602 603 603 604 605 605 609 609 610 611 612 613 615 6 1 5 616 617 619 619 620 622 628 630 631 632 637 638
V 19
18.2Realization of a NearIdeal Rectifier 18.2.1CCM Boost Converter 18.2.2 DCM Flyback Converter 18.3Control of the Current Waveform 18.3.1 Average Current Control 18.3.2Current Programmed Control 18.3.3Critical Conduction Mode and Hysteretic Control 18.3.4Nonlinear Carrier Control 18.4SinglePhase Converter Systems Incorporating Ideal Rectifiers 18.4.1Energy Storage 18.4.2Modeling the Outer LowBandwidth Control System 18.5RMS Values of Rectifier Waveforms 18.5.1 Boost Rectifier Example 18.5.2SinglePhase Rectifier TopologiesComparison of 18.6Modeling Losses and Efficiency in CCM HighQuality Rectifiers 18.6.1 Expression for Controller Duty Cycle d(t) 18.6.2Expression for the DC Load Current 18.6.3Solution for Converter Efficiency 18.6.4Design Example 18.7Ideal ThreePhase Rectifiers 18.8Summary of Key Points References Problems Resonant Converters
Resonant Conversion 19.1Sinusoidal Analysis of Resonant Converters 19.1.1Controlled Switch Network Model 19.1.2 Modeling the Rectifier and Capacitive Filter Networks 19.1.3 Resonant Tank Network 19.1.4 Solution of Converter Voltage Conversion Ratio 19.2Examples 19.2.1 Series Resonant DC–DC Converter Example 19.2.2Subharmonic Modes of the Series Resonant Converter 19.2.3Parallel Resonant DC–DC Converter Example 19.3Soft Switching 19.3.1Operation of the Full Bridge Below Resonance: ZeroCurrent Switching 19.3.2Operation of the Full Bridge Above Resonance: ZeroVoltage Switching 19.4LoadDependent Properties of Resonant Converters 19.4.1 Inverter Output Characteristics 19.4.2Dependence of Transistor Current on Load 19.4.3Dependence of the ZVS/ZCS Boundary on Load Resistance
Contents
xv
640 642 646 648 648 654 657 659 663 663 668 673 674 676 678 679 681 683 684 685 691 692 696
703 705 709 710 7 1 1 713 714 715 715 717 718 721
722
723 726 727 729 734
xvi
20
Contents
19.4.4Another Example 19.5 Exact Characteristics of the Series and Parallel Resonant Converters 19.5.1 Series Resonant Converter 19.5.2 Parallel Resonant Converter 19.6 Summary of Key Points References Problems
Soft Switching
20.1 SoftSwitching Mechanisms of Semiconductor Devices 20.1.1 Diode Switching 20.1.2MOSFET Switching 20.1.3IGBT Switching 20.2 The ZeroCurrentSwitching QuasiResonant Switch Cell 20.2.1Waveforms of the HalfWave ZCS QuasiResonant Switch Cell 20.2.2The Average Terminal Waveforms 20.2.3The FullWave ZCS QuasiResonant Switch Cell 20.3 Resonant Switch Topologies 20.3.1The ZeroVoltageSwitching QuasiResonant Switch 20.3.2The ZeroVoltageSwitching MultiResonant Switch 20.3.3QuasiSquareWave Resonant Switches 20.4 Soft Switching in PWM Converters 20.4.1The ZeroVoltage Transition FullBridge Converter 20.4.2Switch ApproachThe A u x i l i a r y 20.4.3A u x i l i a r y Resonant Commutated Pole 20.5 Summary of Key Points References Problems Appendices Appendix ARMS Values of CommonlyObserved Converter Waveforms
A.1 A.2
Appendix B
B.1
B.2
Some Common Waveforms General Piecewise Waveform
Simulation of Converters
Averaged Switch Models for Continuous Conduction Mode B.1.1Basic CCM Averaged Switch Model B.1.2CCM Subcircuit Model that Includes Switch Conduction Losses B.1.3 Example: SEPIC DC Conversion Ratio and Efficiency B.1.4 Example: Transient Response of a Buck–Boost Converter Combined CCM/DCM Averaged Switch Model B.2.1 Example: SEPIC Frequency Responses B.2.2 Example: Loop Gain and ClosedLoop Responses of a Buck Voltage Regulator
737 740 740 748 752 752 755
761 762 763 765 768 768 770 774 779 781 783 784 787 790 791 794 796 797 798 800
803 805 805 809 813
815 815 816 818 819 822 825
827