//img.uscri.be/pth/05a868e93307792b17f98495ba580ecb69f71b90
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 244,34 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Nonparametrics for Sensory Science

De
192 pages
Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research. Nonparametrics for Sensory Science is written to complement existing parametric methodology. Nonparametric methods are appropriate when facts are only available in nominal or ordinal form, and when the model assumptions necessary for parametric procedures do not hold.

Author Rayner and his colleagues consider problems including the most commonly occurring and important experimental designs: the one-sample, k-sample, blocked samples, samples with factorial structure and samples with correlation structure. Innovative new techniques are outlined and complemented with real examples. Techniques described may be applied to data where the traditional, most frequently applied nonparametric tests, such as the Kruskal-Wallis, the Friedman and the Spearman tests, are applied.

Those familiar with traditional nonparametric testing will be able to update their knowledge, acquiring powerful new methods. Those without prior knowledge of nonparametric testing will be able to acquire that knowledge through this book. Aimed at sensory scientists and statisticians interested in nonparametrics, the techniques of Nonparametrics for Sensory Science are of broad general interest, but are of particular interest in sensory evaluation applications.

Voir plus Voir moins
Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research. Nonparametrics for Sensory Science is written to complement existing parametric methodology. Nonparametric methods are appropriate when facts are only available in nominal or ordinal form, and when the model assumptions necessary for parametric procedures do not hold.
Author Rayner and his colleagues consider problems including the most commonly occurring and important experimental designs: the one-sample, k-sample, blocked samples, samples with factorial structure and samples with correlation structure. Innovative new techniques are outlined and complemented with real examples. Techniques described may be applied to data where the traditional, most frequently applied nonparametric tests, such as the Kruskal-Wallis, the Friedman and the Spearman tests, are applied.
Those familiar with traditional nonparametric testing will be able to update their knowledge, acquiring powerful new methods. Those without prior knowledge of nonparametric testing will be able to acquire that knowledge through this book. Aimed at sensory scientists and statisticians interested in nonparametrics, the techniques of Nonparametrics for Sensory Science
are of broad general interest, but are of particular interest in sensory evaluation applications.