Dendritic oligoelectrolytes [Elektronische Ressource] : layer-by-layer assembly and counter ion controlled micelle formation = Dendritische Oligoelektrolyten / vorgelegt von Karin Rosenlehner

De
Dendritic Oligoelectrolytes: Layer-by-Layer Assembly and Counter Ion Controlled Micelle Formation Dendritische Oligoelektrolyten: Layer-by-Layer Anordnung und Gegenionkontrollierte Mizellbildung Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Karin Rosenlehner aus Deggendorf Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 11. Juni 2010 Vorsitzender der Promotionskommission: Prof. Dr. Eberhard Bänsch Erstberichterstatter: Prof. Dr. Andreas Hirsch Zweitberichterstatter: Prof. Dr. Timothy Clark Meinem Doktorvater, Prof. Dr. Andreas Hirsch, gilt mein besonderer Dank für sein Interesse am Fortgang dieser Arbeit sowie für seine Anregungen und die Diskussionen mit ihm. Die vorliegende Arbeit entstand in der Zeit von Oktober 2005 bis März 2010 am Lehrstuhl für Organische Chemie II der Friedrich-Alexander-Universität Erlangen-Nürnberg. Meinen Eltern “In the book of life, the answers aren't in the back.” CHARLIE BROWN, PEANUTS Index of Abbreviations a.u.
Publié le : vendredi 1 janvier 2010
Lecture(s) : 22
Source : D-NB.INFO/1004837526/34
Nombre de pages : 174
Voir plus Voir moins



Dendritic Oligoelectrolytes: Layer-by-Layer Assembly and
Counter Ion Controlled Micelle Formation

Dendritische Oligoelektrolyten: Layer-by-Layer Anordnung und
Gegenionkontrollierte Mizellbildung



Der Naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg
zur
Erlangung des Doktorgrades Dr. rer. nat.




vorgelegt von
Karin Rosenlehner
aus Deggendorf
Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-
Alexander-Universität Erlangen-Nürnberg














Tag der mündlichen Prüfung: 11. Juni 2010

Vorsitzender der Promotionskommission: Prof. Dr. Eberhard Bänsch
Erstberichterstatter: Prof. Dr. Andreas Hirsch
Zweitberichterstatter: Prof. Dr. Timothy Clark Meinem Doktorvater, Prof. Dr. Andreas Hirsch, gilt mein besonderer Dank für sein
Interesse am Fortgang dieser Arbeit sowie für seine Anregungen und die
Diskussionen mit ihm.

















Die vorliegende Arbeit entstand in der Zeit von Oktober 2005 bis März 2010 am
Lehrstuhl für Organische Chemie II der Friedrich-Alexander-Universität Erlangen-
Nürnberg.





Meinen Eltern






“In the book of life, the answers aren't in the back.”
CHARLIE BROWN, PEANUTS



Index of Abbreviations


a.u. arbitrary units
BIC bone-to-implant contact
CIP contact ion pair
cmc critical micelle concentration
CNT carbon nanotube
cryo-TEM cryo transmission electron microscopy
c-SBF conventional simulated body fluid
DCTB 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]
malononitrile
DCU dicyclohexylurea
DHB 2,5-dihydroxy-benzoic acid
DMF N,N-dimethylformamide
DOSY diffusion ordered 2D NMR spectroscopy
EA elemental analysis
EtOAc ethyl acetate
eq equivalent
FAB fast atom bombardment
GOD glucose oxidase
hFOB human fetal osteoblasts
1-HOBt 1-hydroxybenzotriazole
IR infrared
IT ion triplet
ITO indium tin oxide
J scalar coupling constant
LB Langmuir-Blodgett
LbL layer-by-layer
Maldi-TOF matrix assisted laser desorption ionization-time of flight
MS mass spectrometry

i
NBA 3-nitrobenzylalcohol
NMR nuclear magnetic resonance
OEM oligoelectrolyte multilayer
PAA poly(acrylic acid)
PAH poly(allylamine hydrochloride)
PCR polymerase chain reaction
PDDA poly(diallyldimethylammonium chloride)
PEI poly(ethyleneimine)
PEM polyelectrolyte multilayer
PGSE-NMR pulsed-field gradient spin echo nuclear magnetic resonance
PSS poly(styrene sulfonate)
PTA phosphotungstic acid
PVP poly(4-vinylpyridine)
rt room temperature
SBF simulated body fluid
SIN sinapinic acid
SWNT single walled carbon nanotube
TLC thin layer chromatography
UV/Vis ultraviolet/visible

ii


Table of Contents


1 Introduction ........................................................................................................ 1
1.1 “Chemistry beyond the Molecule” . 1
1.2 Nanostructured, Hierarchical Materials ........................................................ 5
1.2.1 Layer-by-Layer Assembly .............................. 8
1.2.2 Applicational Aspects ................................................................... 12
1.2.3 Molecular Oligoelectrolytes .......................... 16
1.3 Self Organized Superlattices ...... 19
1.3.1 Natural and Artificial Self Organization......................................... 19
1.3.2 Amphiphiles as Models for the Investigation of Self Organization 23
1.3.3 Dendrimers .................................................. 28

2 Proposal ............................................................................ 31

3 Results and Discussion ................................................................................... 33
3.1 Electrostatic Self Organization via LBL Assembly ...... 33
3.1.1 Assembling Behavior of Molecular Oligoelectrolytes ................... 36
3.1.2 Degradation Behavior .................................................................. 50
3.1.3 Application of LbL-assembled Material in Implant Technology .... 62

3.2 Hydrophobic Self Assembly of Amphiphiles ............................................... 86
3.2.1 Synthesis of Single-Tail Amphiphiles ........... 89
3.2.2 Specific Ion Effects of Alkali Metal Ions on cmc of Amphiphiles ... 96
3.2.3 Investigation of Aggregate Size with PGSE NMR Methods ....... 100
3.2.4 Determination of Aggregate Shape via Cryo-TEM ..................... 102
3.2.5 MD Simulations on Counter Ion Binding .................................... 106


iii
4 Summary ......................................................................................................... 111

5 Zusammenfassung ......................................................................................... 115

6 Experimental Part ........................................................................................... 120
6.1 Chemicals and Instrumentation ................................ 120
6.2 Experimental details ................................................................................. 123
6.3 Experimental procedures ......... 125
6.4 Crystallographic Data of 4-(2-Carboxyethyl)-4-(1-oxo-
decylamino)heptanedioic acid (39) .......................................................... 143

7 References ...................................................................................................... 153

8 Appendix ......................................................................................................... 163


iv INTRODUCTION

1 Introduction

1.1 “Chemistry beyond the Molecule”


“Supramolecular chemistry may be defined as “chemistry beyond the molecule”,
bearing on the organized entities of higher complexity that result from the association
of two or more chemical species held together by intermolecular forces. Its
development requires the use of all resources of molecular chemistry combined with
the designed manipulation of non-covalent interactions so as to form supramolecular
[1]entities.”
JEAN-MARIE LEHN, Nobel lecture, December 1987


Beyond molecular chemistry based on the covalent bond, supramolecular chemistry
aims at developing highly complex chemical systems from components interacting
through noncovalent intermolecular forces. Supramolecular chemistry is one of the
most vigorous and fastest growing fields of chemical endeavor and its ongoing
[2]success culminated so far in the conferment of the Nobel Prize to CRAM ,
[3] [1]PEDERSEN and LEHN in 1987 for their contributions to this chemical research area.
Its interdisciplinary nature has brought about wide-ranging collaborations between
physicists, theorists and computational modelers, crystallographers, inorganic and
solid state chemists, synthetic organic chemists, biochemists and biologists. The
rapid expansion of supramolecular chemistry might thus be attributed to the
[4]enormous diversity of chemical systems involved in this topic. Especially the field of
self-assembly and self-organization has gained growing attention in the last years.
Thereby a variety of interactions can be used as assembling motifs. Some of them
have a significant covalent component, e.g. metal-ligand interactions, others are
strictly non-covalent, like electrostatic assemblies or superstructures based on H-
[5]bonding or hydrophobic interaction. Self-organization offers to molecular
nanotechnology a powerful alternative to both top-down miniaturization and bottom-

1 INTRODUCTION
up nanofabrication approaches. But complex properties can only be realized within a
certain length scale of structured matter. Consequently, a higher level of complexity
is reached by a combination of smaller functional entities. Self-fabrication by the
controlled assembly of ordered, fully integrated, and connected operational systems
by hierarchical growth, bypassing the implementation of tedious fabrication and
[6]manipulation procedures is thus the method of choice. However, the new properties
of such an assemblage cannot be predicted from the properties of its constituents.
Whereas scientists have accumulated tremendous knowledge in manipulating matter
both on the levels of atoms and molecules (length scale from 0.01 nm up to 2.0 nm)
and in the macroscopic world (length scale from 0.5 µm up to 100 m) as shown in
figure 1.1, there is very little understanding of the structures and processes occurring
[7]on a length scale of 2.0 nm up to 0.5 µm.
Artificial
Intelligence
Micro-
technology
Nano-
materials
Supra- &
molecular MolecularSubatomic
Molecules Aggregates ElectronicsAtomsParticles
<<0.0001 nm ~ 0.1 nm 0.4 - 2 nm 1 - 50 nm 10 - 500 nm 500 - 5000 nm 100000000 nm
Subatomic Atoms Supra- PrebioticMolecules
Particles molecular Chemistry
Aggregates &
Nanobiology
Cellular
Life
Biological
Intelligence

[7]Figure 1.1 Supramolecular aggregates at the watershed of life sciences and material science.

This area of supramolecular aggregation and nanostructures, which also encloses
the size range of prebiotic chemistry and early subcellular life, is the region where
materials science and life sciences separate. Whereas new levels of complexity in
biological systems are always reached by combining smaller subunits, man has also

2

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.

Diffusez cette publication

Vous aimerez aussi