Development of a sustainable technology platform for the homogeneous Friedel-Crafts alkylation using acidic ionic liquid catalyst [Elektronische Ressource] = Über die Entwicklung einer nachhaltigen Friedel-Crafts-Alkylierung mittels saurer ionischer Flüssigkeiten / vorgelegt von Joni

Development of a Sustainable Technology Platform for the Homogeneous Friedel-Crafts Alkylation using Acidic Ionic Liquid Catalyst Über die Entwicklung einer nachhaltigen Friedel-Crafts Alkylierung mittels saurer ionischer Flüssigkeiten Der Technischen Fakultät der Friedrich Alexander Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Master of Science (M.Sc.) Joni aus Erlangen Erlangen 2009 Als Dissertation genehmigt von der Technischen Fakultät Der Friedrich Alexander Universität Erlangen-Nürnberg Tag der Einreichung : 14. 04. 2009 Tag der Promotion : 29. 07. 2009 Dekan : Prof. Dr. Johannes Huber Berichterstatter : Prof. Dr. Peter Wasserscheid Prof. Dr. Andreas Jess Teile dieser Arbeit wurden bereits in den folgenden Fachzeitschriften oder als Tagungsbeitrag veröffentlicht: Fachzeitschriften: • J. Joni, M. Haumann, P. Wasserscheid, “Continuous gas phase isopropylation of toluene and cumene using highly acidic Supported Ionic Liquid Phase (SILP) catalysts”, Applied Catalysis A: General, 2009, submitted. • J. Joni, M. Haumann, P. Wasserscheid, “Development of a Supported Ionic Liquid Phase (SILP) Catalyst for Slurry-Phase Friedel-Crafts Alkylations of Cumene”, Advanced Synthesis and Catalysis, 2009, 351(3), 423. • J. Joni, D. Schmitt, P. S. Schulz, T. J. Lotz, P.
Publié le : jeudi 1 janvier 2009
Lecture(s) : 40
Source : WWW.OPUS.UB.UNI-ERLANGEN.DE/OPUS/VOLLTEXTE/2009/1428/PDF/JONIJONIDISSERTATION.PDF
Nombre de pages : 215
Voir plus Voir moins

Development of a Sustainable Technology Platform
for the Homogeneous Friedel-Crafts Alkylation using
Acidic Ionic Liquid Catalyst

Über die Entwicklung einer nachhaltigen Friedel-Crafts Alkylierung
mittels saurer ionischer Flüssigkeiten


Der Technischen Fakultät
der Friedrich Alexander Universität Erlangen-Nürnberg
zur Erlangung des Grades
DOKTOR-INGENIEUR



vorgelegt von
Master of Science (M.Sc.) Joni aus Erlangen
Erlangen 2009














Als Dissertation genehmigt von der Technischen Fakultät
Der Friedrich Alexander Universität Erlangen-Nürnberg


Tag der Einreichung : 14. 04. 2009
Tag der Promotion : 29. 07. 2009
Dekan : Prof. Dr. Johannes Huber
Berichterstatter : Prof. Dr. Peter Wasserscheid
Prof. Dr. Andreas Jess
Teile dieser Arbeit wurden bereits in den folgenden Fachzeitschriften oder als
Tagungsbeitrag veröffentlicht:
Fachzeitschriften:
• J. Joni, M. Haumann, P. Wasserscheid, “Continuous gas phase isopropylation of toluene
and cumene using highly acidic Supported Ionic Liquid Phase (SILP) catalysts”, Applied
Catalysis A: General, 2009, submitted.
• J. Joni, M. Haumann, P. Wasserscheid, “Development of a Supported Ionic Liquid Phase
(SILP) Catalyst for Slurry-Phase Friedel-Crafts Alkylations of Cumene”, Advanced Synthesis
and Catalysis, 2009, 351(3), 423.
• J. Joni, D. Schmitt, P. S. Schulz, T. J. Lotz, P. Wasserscheid, “COSMO-RS aided kinetic
studies of alkylation reaction in liquid-liquid biphasic reaction using acidic ionic liquid
catalyst”, Chemie Ingenieur Technik, 2008, 80(9), 1253.
• J. Joni, D. Schmitt, P. S. Schulz, T. J. Lotz, P. Wasserscheid, “Detailed kinetic study of
cumene isopropylation in a liquid-liquid biphasic system using acidic chloroaluminate
ionic liquids”, Journal of Catalysis, 2008, 258 (2) , 401.
Tagungsbeiträge:
• J. Joni, P. Wasserscheid, “Kinetic studies of alkylation reaction in liquid-liquid biphasic
reaction using acidic ionic liquid catalyst”, Abstracts of Papers, 236th ACS National
Meeting, 2008, Philadelphia, PA, United States.
• J. Joni, V. Ladnak, P. Wasserscheid, “Acidic Molten Salts Vs. Acidic Room Temperature
Ionic Liquid: A Comparative Study in Cumene Isopropylation“, DGMK/SCI Conference
2007, 2007, Hamburg-Germany.
• V. Ladnak, J. Joni, P. Wasserscheid,” Concept Development from Ionic Liquid Solvent
Evaluation to Miniplant Design for Homogeneous Friedel-Crafts Alkylation Reaction”,
DGMK/SCI Conference 2007, 2007, Hamburg-Germany.
• A. Riisager, R. Fehrmann, M. Haumann, M. Jakuttis, J. Joni, P. Wasserscheid,“ Supported
Ionic Liquid Phase (SILP) Systems – Novel Fixed Bed Reactor Concepts for Homogeneous
Catalysis”, DGMK/SCI Conference 2007, 2007, Hamburg-Germany.
• Joni, V. Ladnak, P. Wasserscheid, “Acidic Molten Salts Vs. Acidic Room Temperature Ionic
thLiquid: A Comparative Study in Cumene Isopropylation“, 40 Deutsche Katalytiker
Treffen, 2007, Weimar-Germany.
PREFACE / VORWORT
ACKNOWLEDGEMENT / VORWORT
The following work was carried out in the Lehrstuhl für Chemische Reaktionstechnik of the
Friedrich Alexander Universität Erlangen-Nürnberg from July 2006 until March 2009.
Above all I would like to thank Prof. Dr. Peter Wasserscheid for giving me the chance to carry
out this work in his research group. I thank him for being such an excellent and reliable
adviser. His understanding and patient guidance really helped me throughout this project.
For his endless support and confidence in me, I am forever grateful.
I would like to thank Prof. Dr. Andreas Jess and Prof. Dr. Hans-Peter Steinrück for their
willingness to review this work and for the many fruitful scientific comments on this work.
In this opportunity I would like to express my highest appreciation to the following persons
who have helped me to be able to finish this work.
To all my bachelor and master students: Christine Funk, Daniel Schmitt, Melina Machado,
Rushikesh Apte who have shown great interest and engagement in this project. This work
would be only half as fun and half as successful without you. Thank you!
To Michael Schmacks, Achim Mannke, Hans Peter Bäumler and Marco Haumann who have
helped me through and through every detail in constructing the continuous alkylation plant.
To Peter Schulz for his countless support in the analytics and for making all purchasing
administration easier than it looks.
To Michelle Menuét and the secretariat staff, I am greatly in debt for their patience and
supports in all academic, but mostly non-academic, administrations.
I also would like to thank my dear colleagues, Viktor Ladnak, Mitja Medved, Simone
Himmler, Esther Kuhlmann, Sven Kuhlmann, Katharina Obert, Tobias Weiss, Michael Jakuttis,
Caspar Paetz, Karola Höfener, Karola Schneiders, Natalie Paape, Berthold Melcher, Daniel
Assenbaum, Judith Scholz, Alexandra Inayat, Amer Inayat, Soebiakto Loekman and all the
coworkers that I cannot mention in this occasion. Thank you for the comfortable and
constructive working atmosphere.
Last but not least, I would like to show my gratitude to the SI-group Switzerland for the
financial support throughout the work.

i
For my wife Aine

TABLE OF CONTENT / INHALTSVERZEICHNIS
TABLE OF CONTENT / INHALTSVERZEICHNIS
ACKNOWLEDGEMENT / VORWORT ....................................................................................................... i
TABLE OF CONTENT / INHALTSVERZEICHNIS ........................................................................................... ii
FIGURE INDEX / ABBILDUNGSVERZEICHNIS ............................................................................................ v
TABLE INDEX / TABELLEVERZEICHNIS ....................................................................................................ix
1. INTRODUCTION AND WORK SCOPE/ EINLEITUNG UND AUFGABENSTELLUNG ............................................. 1
2. THEORETICAL OVERVIEW / ALLGEMEINER TEIL................................................................................... 7
2.1. General considerations .................................................................................................... 7
2.2. Commercial aspects of Friedel-Crafts alkylation ............................................................. 8
2.3. Mechanistic and kinetic aspects of Friedel-Crafts alkylation reactions ........................ 15
2.3.1. Arenium ion (A + D ) mechanism .......................................................................... 15 E E
2.3.2. Substitution electrophilic unimolecular (S ) mechanism ...................................... 17 E1
2.3.3. Orientation and activity enhancement of substituted aromatics .......................... 17
2.3.4. Kinetic aspects of the Friedel-Crafts alkylation ...................................................... 21
2.4. Ionic liquids overview .................................................................................................... 23
2.4.1. Ionic liquids synthesis ............................................................................................. 24
2.4.2. Properties of ionic liquids ....................................................................................... 29
2.4.3 Friedel-Crafts alkylation in Ionic liquids ................................................................... 30
2.4.4. Friedel-Crafts alkylation on SILP catalysts .............................................................. 32
3. EXPERIMENTAL SET-UP AND METHODS/ EXPERIMENTAUFBAU ........................................................... 35
3.1. General remarks ............................................................................................................ 35
3.2. Chemicals ....................................................................................................................... 36
3.2.1. Reactants, products and solvents ........................................................................... 36
3.2.2. Ionic liquid and acid catalyst preparations ............................................................. 36
3.3. Experiment set-up: batch operation ............................................................................. 39
3.4. Experiment set-up: semi-batch operation .................................................................... 40
3.5. Experiment set-up: continuous operation 45
3.6. Analytical procedures .................................................................................................... 51
3.7. Automation and simulation tools .................................................................................. 56
4. RESULTS AND DISCUSSIONS / ERGEBNISSE UND DISKUSSIONEN ............................................................ 59
ii TABLE OF CONTENT / INHALTSVERZEICHNIS
4.1. Characterization of acidic ionic liquids and molten inorganic salts in biphasic reaction
systems ................................................................................................................................. 59
4.1.1.Alternative acid catalyst for Friedel-Crafts alkylation reaction ............................... 59
4.1.2. Total reaction pressure effect ................................................................................. 62
4.1.3. Temperature effect ................................................................................................. 64
4.1.4. Solvent effect and COSMO-RS for solvent pre-screening procedure ..................... 67
4.2. Mechanistic understanding of Friedel-Crafts alkylation reaction in the presence of
different acidic types ............................................................................................................ 71
4.2.1. Mechanistic investigation on cumene isopropylation ............................................ 71
4.2.2. Universal procedure for analyzing and predicting alkylation product distribution 78
4.2.2.1. Example 1: isopropylation of meta-xylene ..................................................... 79
4.2.2.2. Example 2: isobutylation of toluene ............................................................... 81
4.3. Kinetic investigation of Friedel-Crafts alkylation reactions using acidic ionic liquids in
liquid-liquid biphasic system ................................................................................................ 84
4.3.1. Kinetic Investigation on isopropylation of cumene ................................................ 84
4.3.2. COSMO-RS application in kinetic experiment of Friedel-Crafts alkylation using
acidic ionic liquid ............................................................................................................... 91
4.3.3. Kinetic Investigation on isopropylation of meta-xylene ....................................... 101
4.4. Development of Supported Acidic Ionic Liquid Phase (SILP) catalyst materials for slurry
phase alkylations ................................................................................................................ 104
4.4.1. Comparison between acidic SILP slurry system and acidic ionic liquids in liquid-
liquid biphasic systems ................................................................................................... 104
4.4.2. Development and characterization of highly defined acidic SILP catalyst for slurry
phase Friedel-Crafts alkylation reaction ......................................................................... 107
4.5. Gas phase acidic SILP Friedel-Crafts alkylation reactions using acidic SILP catalysts.. 117
4.5.1. Stability investigation of the acidic SILP catalyst systems .................................... 118
4.5.2. The importance of pretreated supports for SILP gas phase alkylations ............... 120
4.5.3. Liquid biphasic continuous vs. SILP gas phase continuous alkylation .................. 121
4.5.4. Characterization of the gas phase SILP alkylation process ................................... 123
4.5.5. Kinetic investigation in gas phase SILP cumene isopropylation reaction ............. 130
4.5.6. Investigation of the acidic SILP catalyst long-term stability ................................. 133
5. CONCLUSIONS / ZUSAMMENFASSUNG .......................................................................................... 1 4 0
iii TABLE OF CONTENT / INHALTSVERZEICHNIS
6. REFERENCES / LITERATURSTELLE ................................................................................................. 154
APPENDIX A: Gas chromatograph of alkylation products. ........................................................ 159
APPENDIX B: HPLC Pump Calibration lines. .............................................................................. 163
APPENDIX C: GC-FID calibration lines ........................................................................................ 165
APPENDIX D: Code listing for Kinetic fitting using MATLAB ® ................................................... 169
APPENDIX E: Code listing for ERMT078 plant automation modules. ........................................ 173
APPENDIX F: Abbreviations. ...................................................................................................... 195
PLANT AUTOMATION MODULE CD-ROM COMPANION. .................................................................... 195

iv FIGURE INDEX /ABBILDUNGSVERZEICHNIS
SCHEME AND FIGURE INDEX / ABBILDUNGSVERZEICHNIS
Scheme 2.1. Reaction scheme of isopropylation of cumene ..................................................... 9
Scheme 2.2. Hock reaction to produce resorcinol ..................................................................... 9
Scheme 2.3. Reaction scheme of isopropylation of meta-xylene ........................................... 10
Scheme 2.4. Oxidation reaction of 3,5-dimethylcumene to give 3,5-xyleneol and acetone .. 11
Scheme 2.5. Reaction scheme of isopropylation of toluene ................................................... 11
Scheme 2.6. Oxidation reaction of cymenes to give cresols and acetone .............................. 12
Scheme 2.7. Reaction scheme of isobutylation of toluene ..................................................... 13
Scheme 2.8. Formation of arenium ion through attack of electrophile group ....................... 15
Scheme 2.9. Arenium ion mechanism exemplified for isopropylation of benzene ................ 16
Scheme 2.10. Arenium ion mechanism by a dipole attacking group ...................................... 17
Scheme 2.11. The electrophilic aromatic S substitution mechanism ................................... 17 E1
Scheme 2.12. Possible arenium ions for three possible substitution positions ...................... 18
Scheme 2.13. Possible arenium ions with resonance effect ................................................... 19
Scheme 5.1. Summary of the investigated alkylation reaction systems. .............................. 140

Figure 1.1. Annual production capacity of various alkylation processes ................................... 1
Figure 2.1. Schematic representation of possible ionic liquid synthesis routes ...................... 25
Figure 2.2. Anionic species in chloroaluminate system as function of AlCl fraction .............. 26 3
Figure 2.3. Publication frequencies on ionic liquid catalyzed Friedel-Crafts alkylation .......... 31
Figure 2.4. Immobilization of acidic ionic liquid (SILP) on porous support material ............... 33
Figure 3.1. Acidic SILP catalyst preparation from acidic ionic liquid. ...................................... 38
Figure 3.2. Process schema for semi-batch alkylation reaction. ............................................. 40
Figure 3.3. Liquid-liquid semi-batch alkylation reaction set-up. 41
Figure 3.4. Feeding section of the liquid-liquid semi-batch alkylation reaction set-up. ......... 43
v FIGURE INDEX /ABBILDUNGSVERZEICHNIS
Figure 3.5. Cooling coil used for kinetic investigation in liquid-liquid biphasic semi-batch
reaction. ................................................................................................................................... 44
Figure 3.6. 8 meters tubular reactor in the form of a spiral for a liquid-liquid continuous
reaction............... 47
Figure 3.7. Flow diagram of the multimodes continuous alkylation plant. ............................. 49
Figure 3.8. Complete setup of the continuous alkylation rig. ................................................. 50
Figure 3.9. Schematic drawing of 6 ports valve ....................................................................... 53
Figure 4.1. Pressure effect on total alkylation product selectivity. ......................................... 62
Figure 4.2. Pressure effect on total alkylation product selectivity. 63
Figure 4.3. Temperature effect on mono-alkylated isomer distribution................................. 66
Figure 4.4. Schematical representation of predicting partition coefficient between ionic
liquid phase and organic using COSMO-RS. ............................................................................. 67
Figure 4.5. DIPB partition coefficient prediction using COSMO-RS. ........................................ 69
Figure 4.6. Alkylation product distribution of cumene isopropylation using various solvents.
.................................................................................................................................................. 69
Figure 4.7. DIPB equilibrium composition estimated using ASPENPLUS® 12 using Soave-
Redlich-Kwong equation of state. ............................................................................................ 72
Figure 4.8. DIPB isomers distribution using Lewis acidic ionic liquid. ..................................... 73
Figure 4.9. DIPB isomers distribution using Brønsted acidic ionic liquid................................. 74
Figure 4.10. Visualization of the possible alkylation-isomerization pathways. ....................... 75
Figure 4.11. Isomerization of non-equilibrium DIPB mixture using Brønsted acidic ionic liquid.
.................................................................................................................................................. 76
Figure 4.12. Isomerization of non-equilibrium DIPB mixture using Lewis acidic ionic liquids. 77
Figure 4.13. Generic method of evaluating product selectivity in alkylation reaction of non-
functionalized aromatic substances. ........................................................................................ 78
Figure 4.14. Isobutylation of toluene using Brønsted acidic ionic liquid as catalyst. .............. 82
Figure 4.15. Polimerization product in isobutylene of toluene using Lewis acidic ionic liquid
as catalyst. ................................................................................................................................ 83
Figure 4.16. Fitting results for isopropylation of cumene at 50 °C based on organic phase
analysis. .................................................................................................................................... 87
vi

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.