Generalized inductive definitions [Elektronische Ressource] : : the {_m63-calculus [my-calculus] and {_P63_1hn1_1tn2-comprehension [Pi 1 2-comprehension] / vorgelegt von Michael Möllerfeld

2002hael2MöllerfeldGeneralizedand1e-comprehensionDenitionsThebhenheLogikundundakultätvh2002unghGeneralizedderheneWDenitionsersitätThevMöllerfeldandMathematik1Informatik2-comprehensionInaugural-DissertationFzurderErlangungdesWilhelms-UnivDoktorgradesMünsterderorgelegtonhaftenhaelimFachmderInformatik:an:eProf.Dr.Mathematik:F.oNattererageErsterhenLogik:hangewter:TProf.28.01.2003Dr.epkW.TPderohlersündlicZwPrüfungeneiterhe28.01.2003h28.01.2003ter:andteProf.28.01.2003Dr.agPPromotion:.DekKMamaFür.ry.0.Intro..1.1.Systems.of..Denitions.11.1.a,ryorder5.barithmetic..6...72.7.a.........................ys...theory...ector...........v......11Systems1.btheory.......4.b.......denitions.order.......the.......61.ligh..................and.....Companion..............13.......48.set.4.a.....................stabilit............5.set.5.a..............b...........16.1.d.Göstringstheoryandsubsystems.of.the..ecto.6.a.Sp.............6.b.and..........19Nonmonotone2.Generalized.quantiers.and.the.75ry21.
Publié le : mercredi 1 janvier 2003
Lecture(s) : 27
Tags :
Source : D-NB.INFO/967412358/34
Nombre de pages : 147
Voir plus Voir moins



1
hael
and
M?llerfeld
-comprehension
Generalized



e
2
Denitions
2002
The

Wilhelms-Univ
he

Logik
hael
und
Informatik

der
h
orgelegt
ung

Generalized
Mathematik


e
F
Denitions

The
M?nster

on


and
b

h
1
und
2
der
-comprehension

Inaugural-Dissertation
hen
zur
akult?t
Erlangung
W
des
hen
Doktorgrades
ersit?t
der
v

v
haften

im
M?llerfeld
F
2002
ac
h?ndlic
Dek
Promotion:
an:
28.01.2003
Prof.
T
Dr.
he
F.
28.01.2003
Natterer
epk
Erster
der

Pr?fungen
h
28.01.2003
ter:
andte
Prof.
ag
Dr.
o
W.
e
P
age
ohlers
m
Zw
hen
eiter


Logik:
h
Informatik:
ter:
angew
Prof.
Mathematik:
Dr.
T
P
der
.
28.01.2003
KMama
F?r.
Contents
51
0
.
Intro
.

.
1
.
1
.
Systems
.
of
.

.
Denitions
.
11
.
1.a
.

and
order
57
arithmetic
Em
.
.
.
Sp
.
.
.

.
Companions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
54
.
.
.
.
.
.
.
.
.
set
.
.
.
of
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
11
.
1.b
of

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
and
.
nonmonotone
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.

.
.
.
.
.
67
.
.
.
.
.
.
.
67
.
.
.
.
.
.
.

.
.
.
.
.
theo
.
.
.
.
.
.
.
.
.
.
.
.
13
.

.

.

.
.
.
.
.
.
4
.
theo
.
Set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
51
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.

.
theo
.
First
.
.
.
.
.
.
.
.
.
.
.
.
.
57
.
edding
.
.
.
.
.
.
.
.
.
.
16
.
1.d
.

.
strings
del-Berna
and
and
subsystems
.
of
.
the
.

.

64
.
r
.

.
ector
.
.
.
.
.
.
.
.
.
.
.
.
.
Sp
.
nonmonotone
.
.
.
.
.
.
.
.
19
.
2

Generalized
.
quantiers
.
and
.
the
.

.

7
21
79
2.a
.
Generalized
.
quan
.
tiers
.
.
.
.
.
.
.
.
.
.
.
.
79
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
48
.
Systems
.
set
.
ry
.
4.a
.
theory
.
.
.
.
.
.
.
.
.
.
22
.
2.b
.
Innitary
.

.
and
.
generalized
.
quan
.
tiers
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.b
.
stabilit
.
,
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23
.

.
In
5
termezzo
denitions

set
a
ry
theory
5.a
of
order
iterated

game
.
quan
.
tiers
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.b
.
b
.
the
.

.
.
.
.
28
.
2.d
.

.
theory
.
of
.

.
e
.
denitions
.
with
.
quan
.
tiers
.
.
.
.
61
.
G?
.
ys
.
theory
.
ligh
.

.
.
.
.
.
.
.
.
.
.
29
.
3
.
Nonmonotone
.

6
denitions
ecto
and

the
6.a

theory

Sp
35

3.a
.
Nonmonotone
.
Q
.
-inductiv
.
e
.
denitions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
6.b
.
ector
.
and
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
72
.
Nonmonotone
.
and
.
.
35
.
3.b
.
Compactness
.
results
.
for
.
8
.
n
.
-inductiv
.
e
.
denitions
75
.
Companion
.
ry
.
7.a
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
39
.

.

.

.
v
.
ersus
v
.
7.b
.
The
.

.
theorem
.
.
.
.
.
.
121
.
.
.

.
.
.
.
.
y
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
Stabilit
.
.
.
113
.
1
.
.
.
117
.
.
.
.
.
.
.
.
.
.
.
.
.
Nonmonotone
84
.

.
The
.
analytic
.
part

of
.
a
vi

.
.
.
.
.
.

.
.
.
.
.
.
.
2
.
denitions
.
stabilit
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
quan
.
.
.
.
89
.
7.d

In
.
termezzo
.


extensional
.

.
.
.
.

.
.
.
126
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
111
.
v
.
.
.
.
.
.
.
.
.
.
.
.
.
.
90

7.e
rehension,
Companion
and
theory
10.a
and
-comprehension
b
.
oldface
.
systems
.
.
.
.
.
.
.
.
.
.
Pro
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
119
.

.

.
.
.
.
.
.
.
.
.
.
.
.
91
.
7.f
.
Kripk
.
e-Platek
11.b
set
and
theory
.
and
.
Kreisel's
.
theory
.
of
.

122
e
and
denitions
.
.
.
.
.
.
.
.
.
.
11.d
93
stabilit
8
.
Mo
.
dels
.
fo
.
r
.

124


and
.
stabilit
.
y
.
95
.
8.a
Sizes
First
.
order
.

.
.
.
.
.
.
.
.
.
.
Bibliography
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
y
.
ersus
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
96
.
8.b
.
Stabilit
.
y
10
and
1

-comp
.
stabilit
.
,
.

.
117
.

.
2
.
and
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10.b
.
of-theoretic
.
.
.
.
.
.
.
.
.
.
98
.

.
Building
.
Mo
.
dels
.
.
.
.
.
.
.
.
.
.
.
.
11
.
theo
.

.
11.a
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
121
.
Generalized
.
tiers
.

.
.
.
.
103
.
8.d
.
Pro
.
of-theoretic
.

.
for
.
theories
.
based
.
on
.

11.c
strings

.

.
.
.
.
.
.
.
.
.
.
.
.
105
.
9
.
On
.
the
.
relative
123
strength

of
and

y
strings
.
109
.
9.a
.
First
.
order
.
nonmonotone
.

.
.
.
.
.
.
.
.
.
.
11.e
.

.
and
.
ordinals
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11.f
.
of
.
ordinals
.
.
.
.
.
.
.
.
.
.
.
.
109
.
9.b
.
Sizes
.
of
.

.
strings
.
.
.
.
127
.
133
.
.this
0
is
Intro
)

b
In
X
the
an
thesis
DeBakker
w
es
e
ect
study
monotone
the
h
pro
'
of
a
theory
ada
and
of

X
theory
oin
of
1
generalized
X


e
form
deni-
shap
tions.
negation
As
N
a
xed
main
denitions.
result
ar70
w
,
e
determines
sho
all
w

that
Y
the
ely

least

e
(a
)

(
system
sp
of
are
p
'
ositiv
X
e
form

form
e
X
denitions)
um
and
Then
its
=
nonmonotone
x;
analogue,
it
as
The
w
ositiv
ell
b
as
and
a
it
theory
in
based
w
on
In
iterated
p
op
He
en
in
game
(i.e.,
quan
!
tiers

and
).
v
its
arious
xed
systems
is
of
with
set

theory
v
based
(
on
\
the
R

)
of
:


and
e
stabilit
ositiv
y
denitions.
are
x;
pro
e
of-theoretically
ositiv
equiv
(i.e.,
alen
in
t
ery
to
of

t
1

2
en
-
er
CA
b
0
op
,
X
the
x
subsystem
'
of
)

Th
order
a
n
oin
um

b
of
er

theory
tro
with
Scott

and
1
ark
2
HP73
-comprehension
no
and
widely
set
science.


In
rst
the
Lubarsky
sequel

w
expressiv
e
w
giv

e
ws
a
represen
brief
preserv
o

v
X
erview.
Y
An
(
op
)
erator
(
from
)
reals
In
(i.e.,

sets

of
generated
natural
p
n
t
um
the
b
one
ers)
resp
to
to
reals
W
is
ha

e
an
=

1
e
=
denition.
f
F
2
or
j
ordinals
X

=
w
g
e
A

ecial
ely
of
dene


denitions
=
p
(
e
<
e
)
Let
[
(
<
X
<
b
=
an
[
-p

e
<
ula

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.