Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Fagus sylvatica and Quercus petraea trees in a mixed forest stand [Elektronische Ressource] / Stefan Fleck. Betreuer: John D. Tenhunen

De
Publié par

Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Fagus sylvatica and Quercus petraea trees in a mixed forest stand Dissertation zur Erlangung der Doktorwürde (Dr. rer. nat.) der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von Stefan Fleck aus Hohensolms Bayreuth, August 2001 1. Gutachter: Prof. Dr. J.D. Tenhunen 2 3 4 Danksagung Herrn Prof. Dr. John D. Tenhunen danke ich für die Überlassung des interessanten Themas, für die Förderung und die Anregungen zu meiner Arbeit und die gelungene Koordination mit anderen Projekten. Markus Schmidt spreche ich meinen herzlichen Dank aus für die intensive und freundschaftliche Zusammenarbeit im Steigerwald, Diskussionen und Unterstützung in allen Phasen des Projekts sowie die Überlassung von Messdaten. Dr. Eva Falge, Dr. Barbara Köstner und Dr. Ülo Niinemets danke ich für die ständige Diskussionsbereitschaft, fördernde und kritische Anteilnahme in allen Phasen des Projekts.
Publié le : samedi 1 janvier 2011
Lecture(s) : 32
Source : D-NB.INFO/1018017763/34
Nombre de pages : 184
Voir plus Voir moins













Integrated analysis of relationships between 3D-structure, leaf
photosynthesis, and branch transpiration of mature
Fagus sylvatica and Quercus petraea trees
in a mixed forest stand



















Dissertation zur Erlangung der Doktorwürde (Dr. rer. nat.)
der Fakultät für Biologie, Chemie und Geowissenschaften
der Universität Bayreuth








vorgelegt von
Stefan Fleck
aus Hohensolms




Bayreuth, August 2001







































1. Gutachter: Prof. Dr. J.D. Tenhunen





2












































3












































4
Danksagung

Herrn Prof. Dr. John D. Tenhunen danke ich für die Überlassung des interessanten Themas, für
die Förderung und die Anregungen zu meiner Arbeit und die gelungene Koordination mit
anderen Projekten.

Markus Schmidt spreche ich meinen herzlichen Dank aus für die intensive und freundschaftliche
Zusammenarbeit im Steigerwald, Diskussionen und Unterstützung in allen Phasen des Projekts
sowie die Überlassung von Messdaten.

Dr. Eva Falge, Dr. Barbara Köstner und Dr. Ülo Niinemets danke ich für die ständige
Diskussionsbereitschaft, fördernde und kritische Anteilnahme in allen Phasen des Projekts.

Bei Wolfgang Faltin bedanke ich mich für seine langanhaltende Bereitschaft zur koordinierten
Modellentwicklung und die Unterstützung bei Biomasseernten.

Dr. Alessandro Cescatti, Dr. Manfred Forstreuter, Prof. Dr. Yoshitaka Kakubari, Dr. Hideyuki
Saito und Dr. Jörn Strassemeyer danke ich für die aktive Unterstützung in fachlichen Fragen
und für die Überlassung von Messdaten

Meiner Frau Regina Dehmel danke ich herzlich für die weitreichende Untersützung im Zuge der
Freilandarbeiten, für die kritische Durchsicht von Manuskripten und Literaturliste und das
Management unserer Familie.

Allen weiteren Mitarbeitern und Helfern bei Freiland- und Laborarbeiten danke ich für ihre
Ausdauer und Bereitschaft zu meist langwierigen Tätigkeiten: Annett Börner, Liane Chamsai,
Alexandra Hahn, Uta Lohwasser, Friederike Mayer, Silke Potthast und Marc Schroeter - Dr.
Martina Alsheimer, Dr. Bärbel Heindl-Tenhunen, Dr. Ueli Joss, Friederike Rothe, Hans-Joachim
Scharfenberg, Annette Suske und Dr. Reiner Zimmermann gebührt darüber hinaus mein Dank
für die freundschaftliche Aufnahme in die Arbeitsgruppe.

Dr. Markus Reichstein danke ich für die intensive Durchsicht von Manuskripten und gemeinsam
mit Jens-Arne Subke für inhaltliche Diskussionen.

Bei Ralph Geyer bedanke ich mich für die Lösung zeitraubender Hard- und Software-Probleme.

Dr. Pedro Gerstberger, Dr. Alois-Kastner Maresch, Dr. Holger Lange, Gerhard Müller und Iris
Whelan danke ich für fachliche und praktische Unterstützung.


Die vorliegende Arbeit wurde am Lehrstuhl Pflanzenökologie der Universität Bayreuth im
Rahmen des vom Bundesministerium für Forschung und Technologie geförderten Projekts
PT BEO 51 - 0339476C “Entwicklung eines 3-D-Mischbestandesmodells des N-abhängigen
CO - und Wasseraustausches von Buchen-Mischbeständen in Nordbayern” durchgeführt. 2
5












































6
Contents

1 Introduction .................................................................................................................. 10

1.1 Problems in assessment of gas-exchange of mixed forest stands ........................ 10
1.1.1 The relevance of gas-exchange of mixed forest stands .......................................... 10
1.1.2 Structure dependence of mixed stand gas-exchange ............................................. 11
1.1.3 Unexplored effects of patterns of space capture ..................................................... 12
1.1.4 The complexity of canopy structure formation......................................................... 12
1.1.5 Canopy structure formation is altered under elevated CO and ozone .................... 13 2
1.1.6 Patterns of space capture are the relevant structure information for light utilization 14
1.1.7 Necessity of simulation models for the explanation of altered growth patterns........ 14

1.2 Conclusions ................................................................................................................. 15
1.2.1 The relevance of complexity of structure................................................................. 15
1.2.2 Implications for actual studies on mixed stand gas-exchange................................. 16
1.2.3 Scope and organisation of this study ...................................................................... 17

2 Tree crown structures of mature Fagus sylvatica and Quercus petraea
trees....................................................................................................................................... 18

2.1 Objectives .................................................................................................................... 18

2.2 Materials and Methods ............................................................................................... 19
2.2.1 Stand descriptions .................................................................................................. 19
2.2.1.1 Buchenallee..................................................................................................... 19
2.2.1.2 Großebene and Steinkreuz.............................................................................. 20

2.2.2 Soil pH and soil C/N ratio........................................................................................ 24
2.2.3 Canopy structure determination.............................................................................. 24
2.2.4 Geodetic location measurements............................................................................ 26
2.2.5 Description of branch connections .......................................................................... 27
2.2.6 Leaf cloud oriented biomass harvest and leaf sampling.......................................... 28
2.2.7 Error estimations..................................................................................................... 29

2.3 Results ......................................................................................................................... 30
2.3.1 Allometric relationships of the branch system ......................................................... 30
2.3.1.1 Branch basal area versus estimated sapwood area......................................... 30
2.3.1.2 Allometric relationships of ramification............................................................. 31
2.3.1.3 Allometric relationships between basal area and leaf area or leaf weight......... 33

2.3.2 Discussion of allometric relationships of the branch system.................................... 37
2.3.3 Leaf arrangement in whole tree crowns .................................................................. 40
2.3.3.1 3D-representation of leaf clumping .................................................................. 40
2.3.3.2 Tree Leaf Area Indices .................................................................................... 43
2.3.3.3 Arrangement of leaf clouds.............................................................................. 43

2.3.4 Layer oriented description of leaf distribution in the crown...................................... 46
2.3.4.1 Leaf area of height layers ................................................................................ 46
2.3.4.2 Leaf area densities of height layers ................................................................. 48
2.3.4.3 Effect of gap correction of leaf area densities .................................................. 50
2.3.4.4 Volume gap fractions....................................................................................... 51


7
2.3.5 Leaf cloud oriented evaluation of leaf arrangement in the crown .............................53
2.3.5.1 Properties of the crown environment of each leaf cloud ...................................57
2.3.5.2 Angles of the leaf cloud plane ..........................................................................60
2.3.5.3 Main growth directions of leaf clouds ................................................................61
2.3.5.4 Azimuth angles.................................................................................................65
2.3.5.5 Spatial extension of leaf clouds ........................................................................67
2.3.5.6 Leaf area densities of leaf clouds .....................................................................69
2.3.5.7 Wood area densities of leaf clouds...................................................................75

2.4 Interpretation of investigations on leaf clumping and arrangement........................75

3 Spatial distribution of leaf properties in tree crowns......................................77

3.1 Materials and methods................................................................................................77
3.1.1 Structural leaf parameters .......................................................................................77
3.1.2 Relative irradiance...................................................................................................78
3.1.3 Gas-exchange Measurements.................................................................................78
3.1.4 Evaluation of A/C-curves with RACCIA...................................................................80 i
3.1.4.1 The HARLEY/TENHUNEN model of leaf photosynthesis.......................................81
3.1.4.2 RACCIA routine for species-specific parameterisation .....................................83

3.2 Results..........................................................................................................................86
3.2.1 Light and height dependence of leaf properties.......................................................86
3.2.1.1 Relative Irradiance ...........................................................................................86
3.2.1.2 Leaf angles ......................................................................................................88
3.2.1.3 Angles of neighbouring branches .....................................................................90
3.2.1.4 Leaf Form.........................................................................................................90
3.2.1.5 Leaf mass per area (LMA)................................................................................91
3.2.1.6 Leaf nitrogen and carbon contents ...................................................................94

3.2.2 Photosynthesis measurements ...............................................................................96
3.2.2.1 Comparison of PAM-2000 and RACCIA estimates of J ................................96 max
3.2.2.2 Day respiration (R )..........................................................................................99 d
3.2.2.3 Carboxylation capacity Vc and electron transport capacity J ..................101 max max
3.2.2.4 Nitrogen dependence of J and Vc ..........................................................104 max max
3.2.2.5 The shape of temperature dependence functions for J and Vc ..............106 max max
3.2.2.6 Ball-Woodrow-Berry-coefficient of stomatal sensitivity (g ) ...........................109 fac

3.2.3 Nitrogen dependent model of leaf photosynthesis for beech .................................112
3.2.3.1 Model description ...........................................................................................112
3.2.3.2 Parameterisation............................................................................................113
3.2.3.3 Validation Measurements...............................................................................114
3.2.3.4 Model validation .............................................................................................117

3.3 Summary and discussion..........................................................................................118

4 Application of a 3D-light model to the 3D-representation of beech Gr12
and its stand......................................................................................................................122

4.1 Methods......................................................................................................................122
4.1.1 STANDFLUX-SECTORS.......................................................................................122
4.1.2 Representation of 3D-data with CRISTO...............................................................123
4.1.2.1 Representation of stand structure with crown approximating polyhedrons......124
4.1.2.2 Volume and leaf area density calculation of polyhedrons ...............................125
4.1.2.3 Segmentation of polyhedrons.........................................................................125
8
4.1.3 Parameterisation of STANDFLUX-SECTORS ...................................................... 128
4.1.3.1 Segmentation of leaf cloud enveloping polyhedrons ...................................... 128
4.1.3.2 Segmentation of crown approximating polyhedrons in the stand Großebene. 128
4.1.3.3 Parameter determination for single compartments......................................... 132

4.1.4 Validation of STANDFLUX-SECTORS.................................................................. 132
4.1.4.1 Light and LMA simulations............................................................................. 132

4.1.5 Validation data...................................................................................................... 133

4.2 Results ....................................................................................................................... 134
4.2.1 Stand Structure..................................................................................................... 134
4.2.1.1 Crown length and position of oak and beech trees in the Steigerwald stands 134

4.2.2 LMA-calculations .................................................................................................. 135
4.2.2.1 Validation of the light model with the LMA/irradiance relationship.................. 135
4.2.2.2 Estimation of leaf cloud LMA ......................................................................... 135

4.2.3 Comparison of climate and transpiration data....................................................... 136
4.2.3.1 Daily courses................................................................................................. 136
4.2.3.2 Dependence of leaf cloud transpiration on climate variables.......................... 140
4.2.3.3 Summarising concepts................................................................................... 142

4.3 Summary and discussion ......................................................................................... 142

5 Integrating discussion ............................................................................................ 144

5.1 Characteristics of oak and beech in the stand Großebene................................... 144

5.2 Application of Beer’s law .......................................................................................... 146

5.3 Leaf mass per area (LMA) ................................................................................. 147

5.4 Implications for gas-exchange modelling................................................................ 148

6 Summary..................................................................................................................... 151

7 Zusammenfassung.................................................................................................. 153

8 Appendix..................................................................................................................... 156

8.1 Parameter derivation for chapter 2.3.5 ................................................................... 156

8.2 Measured A/C -curves .............................................................................................. 156 i
8.2.1 Leaves of beech Gr12 .......................................................................................... 157
8.2.2 Leaves of oak Gr13 .............................................................................................. 158

8.3 Figures.................................................................................................................162

9 Literature..................................................................................................................... 169

10 Abbreviations............................................................................................................. 182

9 Introduction
1 Introduction
1.1 Problems in assessment of gas-exchange of mixed forest stands
1.1.1 The relevance of gas-exchange of mixed forest stands
Forty-four percent of the forests in Germany are made up of stands with mixed tree composition
(SMALTSCHINSKI 1990), but despite the growing importance of such stands in forestry (BML
1998), little is known about their ecological significance and environmental economy, due to the
long-standing focus on the cultivation of pure stands in forestry since the second half of the
nineteenth century (KENK 1992). It is generally accepted that genetic variation and variation in
physiological response between species is larger than between individuals of the same species,
which leads to the conclusion that greater variance in terms of shade tolerance, space capture
strategies of crown and root system, and strategies of reproduction is to be found among
individuals of mixed stands than trees of pure stands (LARSON 1992).
Several related and derivable properties of mixed stands have been reported and include:
• Improved utilisation of limited resources due to complementary light and nutrient
requirements (COBB ET AL. 1993, JOSE & GILLESPIE 1997, KELTY 1992, MILLER ET AL. 1993).
• Greater stability and better regeneration after disturbances due to storm, inundation, or
insect pests (BATTAGLIA ET AL. 1999, BURSCHEL ET AL. 1993, KELTY 1992).
• Greater total productivity, which increases the sink-strength for CO of these stands 2
(BURSCHEL ET AL. 1993), but does not necessarily lead to greater timber production
(BURKHART & THAM 1992, SALES LUIS & DO LORETO MONTEIRO 1998).
• More diverse understorey flora and stand fauna as a consequence of greater variability in
the habitat characteristics in available niches (CUMMING ET AL. 1994, GARCIA ET AL. 1998,
NICOLAI 1993).
• More natural stand structure and regeneration (DOBROWOLSKA 1998, ELLENBERG 1996,
RACKHAM 1992).
Additional to these general and qualitative properties, the high proportion of mixed stands
requires their explicit consideration in quantitative assessments. This is strengthened by the
durability of actual changes in forest structure, that are introduced through the wide and
continuing reorganisation of forests towards mixed stands since 1980 (KENK 1992), and whose
environmental effects are not yet defined.
• In the international discussion on greenhouse gases, we would like to know how large the
sink-strength of forests for CO could be (UNO 1998, UNO 2000, EU-COMMISSION 1998, 2
BUNDESMINISTERIUM FÜR UMWELT 1994).
• The groundwater quality below forested areas is increasingly endangered due to the
mobilisation of accumulated heavy metals in the humus layer by acidic deposition (BENS
1999, WEYER 1993). Thus, the effects of stand structure and species composition, which
have an important influence on acidic deposition and amount of newly formed ground water
(BRECHTEL 1989, DRAAIJERS 1993), must be established.
• The flooding of rivers is influenced by land cover on a regional or smaller scale, because
water retention times and absolute losses due to transpiration and interception vary
(DÜSTER 1994, GEES 1997, BORK 2000). While the proportion of forested area in Germany
was remarkably stable during the last 400 years (around 30% of total area, BORK 2000), tree
10

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.