Light Matter Interaction in Nanostructured Materials [Elektronische Ressource] / Christian Kremers

Christian KremersDie Dissertation kann wie folgt zitiert werden:urn:nbn:de:hbz:468-20111108-165121-4[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20111108-165121-4]Vom Fachbereich Elektrotechnik, Informationstechnik, Medientechnik der Bergischen Universität Wuppertal genehmigte Dissertation zur Erlangungdes akademischen Grades Doktor der Ingenieurwissenschaftenvorgelegt vonChristian KremersDiplom PhysikerWuppertal 2011Referent: Prof. Dr. rer. nat. U. PfeifferKorreferent: Prof. Dr. rer. nat. M. ClemensTag der m ündlichen Pr üfung: 08.07.2011ycouplingvInhargethisobtainedthesisThettwItospasplengthectscitiesofhargeelectromagnetiwithctwfromacrystalvstudied.eininpteractionhewithmonanotsstructuredoma-radiatioterialducedarepstudied.pFirst,orthogonaltCherenkwforocanalternativaevsemi-analyticalexpressionsmethofordsaretothesolvemittedetrthejectoryscatteringofproblemondingoneop-caltical(i)nanoforwireyanetennataremoinhtro(iii)duced.nInyordervtojectoryreducedditionaltheprogeneralethreeindimensionalthatvinolumesurfaceinategraliequationsmalldescparticularrtheictrumbingeldthefar-eldscatteringed.
Publié le : samedi 1 janvier 2011
Lecture(s) : 14
Source : ELPUB.BIB.UNI-WUPPERTAL.DE/EDOCS/DOKUMENTE/FBE/ELEKTROTECHNIK/DISS2011/KREMERS/DE1103.PDF
Nombre de pages : 140
Voir plus Voir moins

Christian KremersDie Dissertation kann wie folgt zitiert werden:
urn:nbn:de:hbz:468-20111108-165121-4
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20111108-165121-4]Vom Fachbereich Elektrotechnik,
Informationstechnik, Medientechnik der
Bergischen Universität Wuppertal
genehmigte Dissertation zur Erlangung
des akademischen Grades
Doktor der Ingenieurwissenschaften
vorgelegt von
Christian Kremers
Diplom Physiker
Wuppertal 2011Referent: Prof. Dr. rer. nat. U. Pfeiffer
Korreferent: Prof. Dr. rer. nat. M. Clemens
Tag der m ündlichen Pr üfung: 08.07.2011aAbstractofInesthisisthesisformtanalysiswofoisaspeects(emissionofatelectromagnetivcawofatvbeInintheteractionowithcnanodesstructuredofma-vterialnarebstudied.oFirst,ossiblettowoothealternativbelsemi-analyticalermethofordsthetoderivsolvCherenkeptheum)scatteringinproblemBloongroupop-dticalspacenanothatwireevan(ii)tennasuppressedaredensitinvingtromoduced.thatIneorderthetoeloreduceoftheinsidegeneralcessthreexprdimensionalthevtheolumeainintegral2DequationndesciranalyticaliemissionbingandthedistributionscatteringzoneproblemThetoforavsimpleerseunitmi-analyticaleconetdimensionaltraiolncalculationstegro-dierenhtialcorrespequation,elobtothoinmethoreciprods.utilizeealssolutionsCherenkofexiststhecprob-citlemtheofbplanethewcurrenaprovaehargescatteringconisinniteandcylinder.enhancemenAeregularizationisandonldiscretizationonenscgrouphemeyistrapropcosedAintheorderradiationtogainedtransformanalyticalthessionindistributiontegro-dierenzone.tialwnequationsradiationincalculatedtophotonicsolelyaingrtegralinequation.bThistourtransformationoenablesatostudied.solvparticulareexpressionsthetheoriginalspproblemctrumwithoutfortheeldnecessitinyfar-eldtoareimped.oseobtainedadditionalulabtheoundaryoconditionspatwtheemittednanoerwirelengthedges.spNumericaltrevofaluationheofhargethejectorypropvosedvmethothedsofandctheirmocomparisonandwithondingdierenvtcitiesnlimiumericeallyprig-tsorousthemethocaldsonlyisThepresenrevte(i)dtheforoscatteringeectcross-sectionforcalculations.eryGoldhargenanoelowiresyarethatanalyzedradiatioatcanopticaleandifneacouplingrthe-itnfraredyspducedectralyrange.moThecinwithtrBloohduceddeone-dimensionalpsemi-analyticalormetho(iii)dsandemonstratetgoradiatedondrgyagreemepniftyandcompsupteriorthenvumericalcitporthogonalerfor-themancejectoryinthecomparisonhargewithsmall.rigorousdditionalninumericalCherenkmethovds.proSecond,isthefromradiationheofeaeuniformlyformoeldvingincfar-eldharItgshoethat(Cherenkfar-eldocanveradiation)ininside3Dacrystalgeneralythreesurfacedimensionalte(3D)aandandtawoneoydimensionalcon(2D)iptegraleriovdicjustdielectricsmallmediumisk
conrmedofhtheirstemissionBcalculations.rilthelouinbzone.theThewithspatialinvryariationfasterincomputationaltheforfar-eldectrumindistributiontensityynisagreemendueothtov(i)dinexpressionsterferencemofdemandingjustiiaothfewtheBlospcandheldeigenmoaredesbandcomparison(ii)rigoroustheumericaltopTheologicaltpropbertiescasesofstheefractiongoo-spacewheresurfaceanalytical(3D)areorandconuctourless(2D).onTheresources.obtainedexpressionstedAgratefulcknocolleagueswledgmeentsiiiFirsttheofforallmIewouldouldCommlikforevskytonotthankfromProf.andUllricortedhConPfeierwforthankgivingthemeectheofopppatience.ortunitiyFtodiscussions.conwtinstueymyyTheresearcwhDFontnanoDielectricsphotonicsminIhiselabmoratoryorkingatrequencythecationUnivinstitutersitersityuppofhelpWamuppDr.eukrtEvalhandyforlastbthiseingnotmossibleysuppsupLeo.evrhvisuppsorvoorkvthiserpartiallytheseyyorscears.ItalsowiththankMetalshimnforyhisork.encouragemenwt.likItoamallparticularygratefulwtoinDr.High-FDmitryandN.uni-ChigrinTforhnologybateingUnivmyyWsupertalervisor,theirteacandher,IcolleagueparticularandtofriendSergesinceZhIowandrotearistusmuhcyuoDiplomamanthesisfruitfulatAndthebutUnivleast,ersitthesisyouldofbBonnpandwithoutfurtherrongatorttheAlexandraUnivThankersitouyeryofucWforuppourertal.ortIloalsoe.thankwDmitrypresenforinmanthesisyasstimsuppulatingbandtheencouragingG-Fdiscussihergruppon557sLighandConnemenhisandcontroltinStructureduosandin.terestiiv.ContentsTheoremI.Theo.retical.F.oundations.8.1LatticesMacroscopic.Electromagnetism.9.1.1anMaxwScatteringell's4.1Equations.in.Macroscopic.Mediav.Scalar.The.Green's...of...............ranslational...erio...metry9.1.1.1.Time.-HarmonicofFields..Radiation.24.........V.olume.29.n.....T.......of.v............10.1.1.2.Spandectral.Represen.tationTofh'sTim.e-Dep.enden.t.Fields..2.2.1.F.Equation...22.Solution.Condition..11Dy1.2.Constitutiv.e.Relations........3.29.Equiv.The.tegral...Scattering.Long.r.........3.3.t.Sec...........4.Crystals.W.Equation11.1.2.1.The.Dip.ole.Oscill.at.o4.2r.Mo.del..........4.3.F.c.........39.S.Blo.orem............13.1.3.Conserv.ation.of22Energy:ThePGreen'sounctionynHelmholtz'sting's.Theorem......2.2.2.General.and.Boundary.......2.3.adic.function........14.1.4.V.ector.Helmholtz.Equation........26.Scattering.Light.3.1.olume.alence.and.V.In.Equation.....3.2.on.Innitely.Cyli.de............16.1.5.Boundary.Conditions30.The.o.al.Cross.tion.....................34.Principles.Photonic.36.The.a.e..............18.2.The.Electromagnetic.Field.p.ro.duced.b36yTCurrents:SymmetryF.o.rmal.Solution.20.2.1.V.ector.and.Scalar.P.oten.tials,.Lorenz38GaugeP.dic.unctions.Recipro.al...................4.4.ranslation.ym2and0c2.2TheSolution.of.the.Scalar.Helmholtz.Equation......39...4.4.1112Blo95clh.Eigenandw.a.v.esSpatial.3D.......Radiated.........................ov.duction.........Results...88..41.4.4.2inExiste.n.c.e.of.Photonic.Band8.3Structure................I.erio.Media.Sp.........Emission41.4.4.3.Bril.louin.Zone..................Cherenk.......Crystal.............103..................42.4.4.4.Ti5.6me-Rev.ersal.Symmetry..............I.in.Di.r.6.7.78.................78.ectrum43.4.5.Retarded.Green's.F.unction,.Solutions.of7.3the.W.a.v.e.Equation......Summary........43.4.6.T.w.o-dimensional94Photonic95Crystalsv.F...........2D.............100.Crystals............47NumericalI.I.Optical.A.n.t.en.nas.51.5.Light.Scattering.on.Nano.wire.Antennas952.5.1.In.tro.duction....67.Summary...................................72.I.Cherenk.Radiation.P.dic.e.ect.ic.75.Intro.76.Emission.ectrum527.15.2FieldIn.tegral.Equations.of.P.o.c.kli.n.g.t.on'.s.T.yp.e..7.2.Sp...............................8053Numerical5.3.Discrete.F.orm.of.the.V.olume.Curren.t.In.tegro-Diere.n.tial.Equation....7.4..5.8.5.4.Discrete.F.orm.of.the.Surface.Imp.edance.In.te.gro-Dieren.tial.Equation....863Distribution5.4.18.1Hoallen'sRadiationApproacthehar-Zone.....................8.1.1.Photonic...........................8.1.263Photonic5.4.2.Regul.arization......................8.2.Example.Discussion.....................104.Summary........65.5.5.Numerical.results.and.discussion................108.Conclusion.vi.

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.