Metal oxide supported cadmium sulfide for photocatalytic synthesis of homoallylamines [Elektronische Ressource] / vorgelegt von Müge Aldemir

METAL OXIDE SUPPORTED CADMIUM SULFIDE FOR PHOTOCATALYTIC SYNTHESIS OF HOMOALLYLAMINES Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Müge Aldemir aus Izmir, Türkei Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 16.02.2006 Vorsitzender der Promotionskommission: Prof. Dr. D.-P. Häder Erstberichterstatter: Prof. Dr. H. Kisch Zweitberichterstatter: . D. Guldi Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter Anleitung von Herrn Prof. Dr. Horst Kisch durchgeführt. I gratefully thank my doctoral father Prof. Dr. H. Kisch for offering me the opportunity to make my Ph. D. in Germany, in the interesting field of semiconductor photocatalysis and for instructive discussions during my work. I would like to thank Deutsche Forschungsgemeinschaft for the fellowship within the Graduiertenkolleg “Homogener und Heterogener Electronentransfer” and Prof. Dr. U. Nickel for collaboration within the Graduiertenkolleg. I thank Dr. M. Moll, Dr. S. Y. Shaban, Dr. K. Hein and S. Kasper for the NMR, Dr. C. Damm for the time resolved photocharge, M. Bachmüller for the mass spectroscopy, S.
Publié le : dimanche 1 janvier 2006
Lecture(s) : 60
Source : WWW.OPUS.UB.UNI-ERLANGEN.DE/OPUS/VOLLTEXTE/2006/322/PDF/ALDEMIR_DISSERTATION.PDF
Nombre de pages : 264
Voir plus Voir moins





METAL OXIDE SUPPORTED CADMIUM SULFIDE
FOR
PHOTOCATALYTIC SYNTHESIS OF HOMOALLYLAMINES





Den Naturwissenschaftlichen Fakultäten
der Friedrich-Alexander-Universität Erlangen-Nürnberg
zur
Erlangung des Doktorgrades







vorgelegt von
Müge Aldemir
aus Izmir, Türkei











Als Dissertation genehmigt
von den Naturwissenschaftlichen Fakultäten
der Universität Erlangen-Nürnberg













Tag der mündlichen Prüfung: 16.02.2006

Vorsitzender der Promotionskommission: Prof. Dr. D.-P. Häder
Erstberichterstatter: Prof. Dr. H. Kisch
Zweitberichterstatter: . D. Guldi

Die vorliegende Arbeit wurde von Januar 2003 bis November 2005 am Institut für
Anorganische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg unter
Anleitung von Herrn Prof. Dr. Horst Kisch durchgeführt.

I gratefully thank my doctoral father Prof. Dr. H. Kisch for offering me the opportunity to
make my Ph. D. in Germany, in the interesting field of semiconductor photocatalysis and
for instructive discussions during my work.
I would like to thank Deutsche Forschungsgemeinschaft for the fellowship within the
Graduiertenkolleg “Homogener und Heterogener Electronentransfer” and Prof. Dr. U.
Nickel for collaboration within the Graduiertenkolleg.
I thank Dr. M. Moll, Dr. S. Y. Shaban, Dr. K. Hein and S. Kasper for the NMR, Dr. C.
Damm for the time resolved photocharge, M. Bachmüller for the mass spectroscopy, S.
Kammerer for the XRD measurements, C. Wronna for the elemental analysis, R. Müller
for TGA and BET measurements, and Dr. G. Frank for the TEM analysis. I am also
thankful to Dr. F. W. Heinemann for the X-ray crystal structure determinations and Dr. J.
Sutter for his assistance regarding computer problems.
To Dr. G. Burgeth and Dr. M. Hopfner who are not only my friends but also my
“teachers”, I am especially thankful for their sincerity, help, encouragement, and for always
reminding me to think optimistic in my hard times.
I am also grateful to S. Sperner and N. Mooren for being always there (in the Organic
Institute) for me and for their friendship.
I am deeply thankful to my sisters in Erlangen; Dr. O. Linnik and Dr. P. Pinto. They have
been tireless helping whenever I needed and there are no words to express my thanks to
them.
I am indebted to my parents who educated me to be self-confident and self-sufficient in any
case in the life, but also made me feel like I am never alone. I thank them for their belief in
me, endless affection and support.
And to my sister, my best friend Bilge. Even so far from, my happiness was bigger; my
sorrow was less whenever I shared with her.
Abbreviations

δ Chemical Shift
λWavelength [nm]
ν Frequency
ΘDiffraction Angle (XRD)
τ Lifetime
A Acceptor
BET Brunauer-Emmet-Teller
br Broad
CB Conduction Band
COSY Correlation Spectroscopy
CV Cyclic Voltammetry
d Doublet (NMR), Interplanar Spacing in a Crystal (XRD)
D Donor
DRS Diffuse Reflectance Spectroscopy
E Energy
E ° Redox Potential
EBand-gap Energy bg
E Fermi Level F
*nE Quasi-Fermi Level of Electrons F
*pE i Level of Holes F
E Oxidation Potential ox
E Reduction Pored
FD Field Desorption (MS)
F(R ) Kubbelka-Munk Function ∞
FWHM Full-width of XRD Peak at Half-Maximum
+h Hole in Valence Band
HETCOR Heteronuclear Correlation Spectroscopy
HPLC High Pressure Liquid Chromatography HRTEM High Resolution Transmission Electron Microscopy
I Light Intensity
IFET Interfacial Electron Transfer
k Rate Constant
m Multiplet (NMR)
MS Mass Spectroscopy
2+MV Methylviologen, N,N`-Dimethyl-4,4`-bipyridinium ion
P-EMF Photo-Electromotive Force
RT Room Temperature
s Second; Singlet (NMR)
S Scattering Coefficient
SEMSI Semiconductor Support Interaction
t Retention Time R
trTriplet (NMR)
TEM Transmission Electron Microscopy
TLC Thin Layer Chromatography
TMS Tetramethylsilane
U Dember Voltage
VB Valence Band
W Width of Depletion Layer
XPS X-ray Photoelectron Spectroscopy
XRD X-ray-Diffractogram












Naming of Photocatalysts

CdS-A Unsupported CdS

Alumina Supported
10N 10% CdS/Al O (n) [10% wt of CdS supported on neutral alumina] 2 3
prepared in 10% NH solution 3
30N 30% CdS/Al O (n) [30% wt of CdS supported on neutral alumina] 2 3in 10% NH solution 3
50N 50% CdS/Al O (n) [50% wt of CdS supported on neutral alumina] 2 3
prepared in 10% NH solution 3
30N25 30% CdS/Al O (n) [30% wt of CdS supported on neutral alumina] 2 3in 25% NH solution 3

10A 10% CdS/Al O (a) [10% wt of CdS supported on acidic alumina] 2 3
prepared in 10% NH solution 3
30A 30% CdS/Al O (a) [30% wt of CdS supported on acidic alumina] 2 3in 10% NH solution 3

30B 30% CdS/Al O (b) [30% wt of CdS supported on basic alumina] 2 3
prepared in 10% NH solution 3

Silica Supported
10AE 10% CdS/SiO [10% wt of CdS supported on Aerosil silica] 2
prepared in 10% NH solution 3
30AE 30% CdS/SiO [30% wt of CdS supported on Aerosil silica] 2in 10% NH solution 3
50AE 50% CdS/SiO [50% wt of CdS supported on Aerosil silica] 2
prepared in 10% NH solution 3
30AE25 30% CdS/SiO [30% wt of CdS supported on Aerosil silica] 2in 25% NH solution 3Contents I



CONTENTS

CHAPTER 1

1. Introduction 1
1.1. Semiconductor Photocatalysis 2
1.2. Pharmaceutical Importance and Thermal Synthesis of Homoallylamines 5
1.3. Synthesis of Homoallylamines through Semiconductor Photocatalysis 9
1.4. Pharmaceutical Importance of Organic Compounds Bearing Adamantane 13
1.5. Electronic Semiconductor-Support Interaction (SEMSI) 16
1.6. Aim of This Work 18
References 20

CHAPTER 2

2. Al O Supported CdS 24 2 3
2.1. General Properties of Al O as a Support Material 2 3
2.2. Synthesis of CdS/Al O Photocatalysts 26 2 3
2.3. Characterization of Photocatalysts 28
2.3.1. Band-gap Energy Measurements by Diffuse Reflectance Spectroscopy 28
2.3.2. Determination of Quasi-Fermi Level of Electrons 34
2.3.2.1. Quasi-Fermi Level Determinations In The Presence of Hole Scavengers 40
2.3.2.2. Investigation of Light Intensity Effect on Quasi-Fermi Level Determinations 48
2.3.2.3. Energetic Position of Band Edges for CdS/Al O Photocatalysts 50 2 3
2.3.3. IR Spectra of Al O Supported CdS Powders 51 2 3
2.3.4. X-Ray Powder Diffractometry (XRD) 53 Contents II

2.3.5. High Resolution Transmission Electron Microscopy (TEM) 61
2.3.6. Interrogation of a Quantum-Size Effect 63
2.3.7. X-Ray Photoelectron Spectroscopy (XPS) 63
2.3.8. Time Resolved Photocharge (P-EMF) Measurements 68
2.4. Photocatalytic Activity Al O Supported CdS 77 2 3
2.4.1. Determination of the Optimum Photocatalyst Amount 77
2.4.2. Photocatalytic Activity Measurements 79
2.5. Comparison of Al O with SiO as Support Material for CdS 83 2 3 2
References 89

CHAPTER 3

3. CdS-Photocatalyzed Synthesis of Novel Homoallylamines 92
3.1. Photocatalytic Addition Reactions with N-Cinnamylideneaniline 92
3.1.1. Photocatalytic Addition Reactions of N-Cinnamylideneaniline with
cyclopentene, cyclohexene and α-pinene 92
3.1.1.1. HPLC Analysis 93
3.1.1.2. Mass Spectroscopy 96
3.1.1.3. IR 98
3.1.1.4. NMR 99
3.1.2. Thermodynamic Aspects 112
3.2. Photocatalytic Addition Reactions with N-(1-Adamantyl)-p-X-
benzaldehyde Imine (X: -H, -F, -Cl, -Br, -OCH ) 115 3
3.2.1. Photocatalytic addition reactions of N-(1-adamantyl)-p-chloro-
benzaldehyde imine with cyclopentene, cyclohexene and α-pinene 115
3.2.1.1. HPLC Analysis 116
3.2.1.2. Mass Spectroscopy 118
3.2.1.3. Structure Determinations by NMR and X-Ray 120
3.2.2. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-benzaldehyde
Imine (X: -H, -F, -Cl, -Br, -OCH ) with Cyclohexene 129 3Contents III

3.2.3. Photocatalytic Addition Reactions of N-(1-Adamantyl)-p-X-benzaldehyde
Imine (X: -H, -F, -Cl, -Br, -OCH ) with α-Pinene 135 3
References 141

CHAPTER 4

4. Summary 142

CHAPTER 5

5. Zusammenfassung 148

CHAPTER 6

6. Experimental Section 155
6.1. General Methods 155
6.1.1. Irradiation Apparatus and Lamps 155
6.1.2. Solvents and substances 158
6.1.3. Spectroscopic and analytical methods 159
6.2. Quasi-Fermi Level Measurements 168
6.2.1. Influence of Hole Scavengers 169
6.2.2. Influence of Light Intensity
6.3. Synthesis of CdS Photocatalysts 170
6.3.1. Unsuppoted CdS (CdS-A) 170
6.3.2. SiO supported CdS 2
6.3.3. Al O 170 2 3
6.4. Photocatalytic Activity Measurements 172
6.5. Syntheses 173
6.5.1. Addition reactions with N-Cinnamylideneaniline
6.5.1.1. Synthesis of N-cinnamylideneaniline (6) 173 Contents IV

6.5.1.2. Synthesis of N-(1-(cyclopent-2-enyl)-3-phenylallyl)benzenamine (7a) 173
6.5.1.3. Synthesis of N-(1-(cyclohex-2-enyl)-3-phenylallyl)benzenamine (7b) 175
6.5.1.4. Synthesis of N-(1-(4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-yl)-3-
phenylallyl)benzenamine (7c) 176
6.5.2. Addition reactions with N-Adamantyl-p-X-benzaldehyde imine
(X: -H, -F, -Cl, -Br, -OCH ) 177 3
6.5.2.1. Synthesis of N-Adamantyl-p-X-benzaldehyde imine
6.5.2.2. Addition reactions with N-Adamantyl-p-chloro-benzaldehyde imine 178
6.5.2.2.1. Cyclopentene addition to N-Adamantyl-p-chloro-benzaldehyde imine 178
6.5.2.2.2. Cyclohexene addition to N-Adamantyl-p-chloro-benzaldehyde imine 181
6.5.2.2.3. α-Pinene addition to N-Adamantyl-p-chloro-benzaldehyde imine 182
6.5.2.3. Influence of p-Substituent 183
6.5.2.3.1. Addition reactions of cyclohexene to N-Adamantyl-p-X-benzaldehyde
Imine derivatives (X: -H, -F, -Cl, -Br, -OCH ) 183 3
6.5.2.3.1.1. Addition of cyclohexene to N-Adamantyl-benzaldehyde imine 183
6.5.2.3.1.2.Addition of cyclohexene to N-Adamantyl-p-fluoro-benzaldehyde imine 184
6.5.2.3.1.3. Addition of cyclohexene to N-Adamantyl-p-chloro-benzaldehy 185
6.5.2.3.1.4.f cyclohexene to N-Adamantyl-p-bromo-benzaldehyde imine 185
6.5.2.3.1.5. Addition of-methoxy-benzaldehyde imine 186
6.5.2.3.2. Addition reactions of α-pinene to N-Adamantyl-p-X-benzaldehyde
Imine derivatives (X: -H, -F, -Cl, -Br, -OCH ) 188 3
6.5.2.3.2.1. Addition of α-pinene to N-Adamantyl-benzaldehyde imine 188
6.5.2.3.2.2.Addition of α-pinene to N-Adamantyl-p-fluoro-benzaldehyde imine 189
6.5.2.3.2.3.Addition of α-pinene to N-Adamantyl-p-chloro-benzaldehyde imine 190
6.5.2.3.2.4. Addition of α-pinene to N-Adamantyl-p-bromo-benzaldehyde imine 190
6.5.2.3.2.5. Addition of α-pinene to N-Adamantyl-p-methoxy-benzaldehyde imine 191

6.6. Crystal Structure Determinations 193
References 253

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.