Mineralized bionanoparticle Pickering emulsions [Elektronische Ressource] / vorgelegt von Günther Jutz

De
Publié par

Mineralized Bionanoparticle Pickering Emulsions DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fach Chemie der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von Günther Jutz geboren in Memmingen Bayreuth, 2008 Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Die vorliegende Arbeit wurde in der Zeit von Januar 2005 bis Juli 2008 am Lehrstuhl für Physikalische Chemie der Universität Bayreuth in der Arbeitsgruppe von Herrn Prof. Dr. Alexander Böker (Lichtenberg-Professur der VolkswagenStiftung) angefertigt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Promotionsgesuch eingereicht am: 16.07.2008 Zulassung durch die Promotionskommission: 23.07.2008 Wissenschaftliches Kolloquium: 18.12.2008 Amtierender Dekan: Prof. Dr. Müller Prüfungsausschuß: Prof. Dr. A. Böker (Erstgutachter) Prof. Dr. A. H. E. Müller (Zweitgutachter) Prof. Dr. J. Breu (Vorsitzender) Prof. Dr. Th.
Publié le : jeudi 1 janvier 2009
Lecture(s) : 32
Source : OPUS.UB.UNI-BAYREUTH.DE/VOLLTEXTE/2009/508/PDF/JUTZ_BAYREUTH_2008_MINERALIZED_BIONANOPARTICLE_PICKERING_EMULSIONS.PDF
Nombre de pages : 230
Voir plus Voir moins







Mineralized Bionanoparticle
Pickering Emulsions





DISSERTATION

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
im Fach Chemie der Fakultät für Biologie, Chemie und
Geowissenschaften
der Universität Bayreuth





vorgelegt von
Günther Jutz
geboren in Memmingen



Bayreuth, 2008


Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und
Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.).


Die vorliegende Arbeit wurde in der Zeit von Januar 2005 bis Juli 2008 am Lehrstuhl
für Physikalische Chemie der Universität Bayreuth in der Arbeitsgruppe von Herrn
Prof. Dr. Alexander Böker (Lichtenberg-Professur der VolkswagenStiftung) angefertigt.


Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und
Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.).




Promotionsgesuch eingereicht am: 16.07.2008
Zulassung durch die Promotionskommission: 23.07.2008
Wissenschaftliches Kolloquium: 18.12.2008


Amtierender Dekan: Prof. Dr. Müller

Prüfungsausschuß:
Prof. Dr. A. Böker (Erstgutachter)
Prof. Dr. A. H. E. Müller (Zweitgutachter)
Prof. Dr. J. Breu (Vorsitzender)
Prof. Dr. Th. Scheibel














































































Table of Content

Table of Content ................................................................................................................I
List of Abbreviations ....................................................................................................... V
Table of Symbols...........................................................................................................VII
1 Introduction1
1.1 Biomolecules for New Materials and Device Fabrication................................ 1
1.1.1 Development of Nanostructured Materials............................................... 1
1.1.2 Self-Assembling Protein Materials for Nano- and Biotechnology........... 2
1.1.2.1 Viruses as Polyvalent Scaffolds............................................................ 4
1.1.2.2 Protein Cages as Templates for Constrained Nanomaterials Synthesis 6
1.1.2.3 Protein Cages as Scaffolds and Templates for Materials Synthesis ..... 7
1.1.2.4 Surface Patterning with Self-Assembled Bionanoparticles .................. 7
1.2 Pickering Emulsions and Protein Adsorption at liquid-liquid Interfaces ......... 9
1.2.1 Pickering Emulsions.................................................................................9
1.2.2 Protein Adsorption at liquid-liquid Interfaces ........................................ 13
1.2.3 Quantitative Modelling of Protein Adsorption at liquid-liquid
Interfaces ................................................................................................. 13
1.2.3.1 Surface Tension of Protein Solutions ................................................. 14
1.2.3.2 The Concept of Varying Partial Molar Areas of Adsorbed
218Proteins ........................................................................................... 16
1.2.3.3 Modelling of Protein Adsorption at liquid Interfaces......................... 18
1.3 Bio-Inorganic Composite Materials................................................................ 21
1.3.1 Biominerals in Nature............................................................................. 21
1.3.2 Biomimetic Bone Tissues.......................................................................23
1.4 Hydroxy Apatite Coating in a Biomimetic Process........................................ 26
1.5 Bionanoparticles: Plant Viruses, Ferritin and Proteins................................... 29
1.5.1 Plant Viruses29
291-2951.5.1.1 Cowpea mosaic virus (CPMV) ..................................................
300-3051.5.1.2 Turnip Yellow Mosaic Virus (TYMV) ...................................... 30
308-3101.5.1.3 Tobacco Mosaic Virus (TMV) ................................................... 32
1.5.2 Ferritin....................................................................................................33
330-3321.5.3 Bovine/Human Serum Albumin (BSA/HSA) ................................ 35
3341.5.4 α -Heremans-Schmid glycoprotein (Ahsg)/fetuin-A ........................ 36 2
1.5.5 Physical Properties of Bionanoparticles ................................................. 37
1.6 Outline and Relevance of the Presented Research Work ............................... 39
2 Theoretical Background and Methods.................................................................... 43
2.1 Modelling Protein Adsorption at liquid-liquid Interfaces 43
2.1.1 Quantitative Description of Equilibrium Surface Tension of Protein
203Solutions .............................................................................................. 43
2.1.1.1 Adsorption at Low Protein Concentrations ........................................ 43
2.1.1.2 Adsorption at High Protein Concentrations 47
2.1.2 of Dynamic Surface Tensions ........................ 48
3792.1.3 Approximate Solutions for Dynamic Surface Tensions ..................... 51
2.1.4 Depletion of Droplets.............................................................................. 53
2.2 Determination of Interfacial Tension by Axisymmetric Drop Shape
Analysis .......................................................................................................... 54
2.3 Light Scattering Techniques ........................................................................... 58
II
4072.3.1 Static Light Scattering .........................................................................58
410, 4112.3.2 Dynamic Light Scattering ..............................................................61
2.4 Size Exclusion Chromatography.....................................................................64
2.5 Transmission Electron Microscopy.................................................................68
2.6 Scanning Electron Microscopy .......................................................................70
2.7 Atomic Force Microscopy (AFM) ..................................................................74
2.8 UV-Vis Spectroscopy......................................................................................77
3 Experimental Section..............................................................................................79
3.1 Chemicals........................................................................................................
3.2 Virus Preparation.............................................................................................80
3.3 Conjugation Reactions to CPMV....................................................................81
3.4 Preparation of Pickering Emulsions................................................................81
3.5 Preparation of glass A .....................................................................................82
3.6 Preparation of SBF..........................................................................................82
3.7 Preparation of Supersaturated Calcium Phosphate Solution Containing
Citrate (Ca/P/cit) .............................................................................................84
3.8 Profile Analysis Tensiometry..........................................................................84
3.9 Size Exclusion Chromatography.....................................................................85
3.10 Dynamic Light Scattering ...............................................................................86
3.11 UV-Vis Spectroscopy......................................................................................87
3.12 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)................................87
3.13 MALDI-TOF Mass Spectrometry...................................................................88
3.14 Confocal Fluorescence Laser Scanning Microscopy ......................................88
3.15 Transmission Electron Microscopy and Sample Preparation .........................89
3.16 Scanning Electron Microscopy and Sample Preparation ................................89
3.17 Atomic Force Microscopy90
3.18 X-ray Diffraction.............................................................................................90
3.19 Further Instruments.........................................................................................90
4 Characterization of Viruses.....................................................................................91
4.1 Characterization of Viruses and Proteins with Aqueous SEC and Light
Scattering Detection ........................................................................................91
4.2 Characterization of Viruses and Proteins with Dynamic Light Scattering .....95
4.3 Bionanoparticle Characterization with SDS-PAGE......................................100
4.4 Bionanoparticle Characterization with Transmission Electron Microscopy.102
4.5 Dye-labelled Cowpea Mosaic Virus .............................................................107
5 Protein Adsorption at liquid-liquid Interfaces.......................................................111
5.1 Surface Tension Measurements of Proteins at liquid-liquid Interfaces ........111
5.2 Modelling of Protein Surface Pressure Isotherms.........................................117
5.3 Modelling Dynamic Interfacial Tension Curves of Proteins ........................123
5.4 Bionanoparticle Adsorption at liquid-liquid Interfaces.................................127
6 Investigation of Bionanoparticle Assemblies at Interfaces...................................133
6.1 Bionanoparticles at liquid-liquid Interfaces ..................................................133
6.2 Bionanoparticle Membranes.........................................................................135
6.3 Bionanoparticles Trapped at PDMS-Surfaces...............................................138
6.3.1 Investigation of the Surface Structure with SEM..................................138
6.3.2 n of the Surface Structure with AFM .................................141
6.3.3 Fluorescence Microscopy of Antibody-Labelled Bionanoparticle
Pickering Emulsions ..............................................................................147
7 Hydroxy Apatite Mineralization at Surfaces and Interfaces149
III
7.1 Hydroxy Apatite Formation on PET in a Biomimetic Process..................... 150
7.1.1 Preparation and Characterization of Bioactive Glass A ....................... 150
7.1.2 ation on Surfaces in SBF Solution ................... 152
7.1.3 ation on PET in SBF ........................................ 153
7.2 Hydroxy Apatite Formation on PET in 1.5 SBF with Citrate ...................... 157
7.3 ation on PET in an Oversaturated Calcium
Phosphate Solution ....................................................................................... 160
7.4 Mineralization of Bionanoparticle Coated Surfaces..................................... 164
7.4.1 Biomimetic Hydroxy Apatite Mineralization of Bionanoparticle-
Coated Surfaces..................................................................................... 166
7.4.2 Hydroxy Apatite Mineralization of Bionanoparticle Coated Surfaces
in 1.5 SBF with Citrate.......................................................................... 170
7.4.3 erfaces
in an Oversaturated Calcium Phosphate Solution................................. 171
7.5 Investigation of the Hydroxy Apatite Mineral Layer ................................... 173
7.6 Comparison of Mineralization Conditions ................................................... 176
7.7 Mineralization of Pickering Emulsions ........................................................ 178
8 Summary...............................................................................................................187
9 Zusammenfasssung...............................................................................................189
References..................................................................................................................... 191
IV



List of Abbreviations

AFM atomic force microscopy
ATRP atom transfer radical polymerization
BSA bovine serum albumin
BSE back scattered electrons
CCMV cowpea chlorotic mottle virus
cDNA complementary DNA
CP coat protein
CPMV cowpea mosaic virus
cryo-TEM cryo-transmission electron microscopy
DLS dynamic light scattering
DDLS depolarized dynamic light scattering
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
EDX energy dispersive X-ray analysis
FPLC fast protein liquid chromatography
FRET fluorescence resonance energy transfer
HAP hydroxy apatite
HSA human serum albumin
LS light scattering
MALDI-TOF MS matrix-assisted laser desorption ionization time-of-flight mass
spectrometry
MAP multiple antigene peptide
NHS N-hydroxy succinimide
MW molecular weight
NMR nuclear magnetic resonance
ORF open reading frame
PDMS poly(dimethyl siloxane)
PEG poly(ethylene glycol)
PET poly(ethylene terephtalate)
+pH negative common logarithm of proton concentration (-lg[H ])
pI isoelectric point
VI
PMMA poly(methyl methacrylate)
PTFE poly(tetrafluoro ethylene)
RdRp RNA dependent RNA polymerase
RI refractive index
rms root means square
RNA ribonucleic acid
rpm rounds per minute
SBF simulated body fluid
SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis
SE secondary electrons
SEC size exclusion chromatography
SEM scanning electron microscopy
sgRNA subgenomic RNA
SLS static light scattering
ssRNA single stranded RNA
STM scanning tunnelling microscopy
TCEP tris (2-carboxyethyl) phosphine hydrochloride
TEM transmission electron mi
TMV tobacco mosaic virus
tris 2-amino-2-hydroxymethyl propane 1,3-diol
tRNA transfer ribonucleic acid
TYMV turnip yellow mosaic virus
UV-Vis ultraviolet-visible
wt% weight percent
XRD X-ray diffraction

The mineralization solutions are abbreviated for easier reading. Please refer to the
indicated chapters for the details of the solution composition:

1.0 SBF, 1.5 SBF, 1.5 SBF/cit chapter 3.6
Ca/P/cit chapter 3.7


Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.