New amphiphilic dendrocalix[4]arenes as building blocks of micellar architectures [Elektronische Ressource] / vorgelegt von Miriam S. Becherer

New Amphiphilic Dendrocalix[4]arenesas Building Blocks of MicellarArchitecturesDen Naturwissenschaftlichen Fakultätender Friedrich-Alexander-Universität Erlangen-NürnbergzurErlangung des Doktorgradesvorgelegt vonMiriam S. Bechereraus EmmendingenAls Dissertation genehmigt von den Naturwissen-schaftlichen Fakultäten der Universität Erlangen-NürnbergTag der mündlichen Prüfung: 30.03.2009Vorsitzender derPromotionskommission: Prof. Dr. E. BänschErstberichterstatter: Prof. Dr. A. HirschZweitberichterstatter: Prof. Dr. J. SchatzMeinem Doktorvater, Prof. Dr. A. Hirsch, möchte ich für sein stetes Interesse am Fort-gang dieser Arbeit sowie seine ständige Diskussionsbereitschaft und seine zahlreichenAnregungen herzlich danken.Die vorliegende Arbeit entstand im Zeitraum von November 2004 bis Dezember 2008am Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-NürnbergKarsten und meiner FamilieSmall Atomes of themselves a World may make,As being subtle, and of every shape:And as they dance about, fit places finde,Such Formes as best agree, make every kinde.(Margaret Cavendish, 1653)Abbreviationsa. u.
Publié le : jeudi 1 janvier 2009
Lecture(s) : 32
Source : WWW.OPUS.UB.UNI-ERLANGEN.DE/OPUS/VOLLTEXTE/2009/1378/PDF/DISSERTATION.PDF
Nombre de pages : 192
Voir plus Voir moins

New Amphiphilic Dendrocalix[4]arenes
as Building Blocks of Micellar
Architectures
Den Naturwissenschaftlichen Fakultäten
der Friedrich-Alexander-Universität Erlangen-Nürnberg
zur
Erlangung des Doktorgrades
vorgelegt von
Miriam S. Becherer
aus EmmendingenAls Dissertation genehmigt von den Naturwissen-
schaftlichen Fakultäten der Universität Erlangen-Nürnberg
Tag der mündlichen Prüfung: 30.03.2009
Vorsitzender der
Promotionskommission: Prof. Dr. E. Bänsch
Erstberichterstatter: Prof. Dr. A. Hirsch
Zweitberichterstatter: Prof. Dr. J. SchatzMeinem Doktorvater, Prof. Dr. A. Hirsch, möchte ich für sein stetes Interesse am Fort-
gang dieser Arbeit sowie seine ständige Diskussionsbereitschaft und seine zahlreichen
Anregungen herzlich danken.
Die vorliegende Arbeit entstand im Zeitraum von November 2004 bis Dezember 2008
am Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-NürnbergKarsten und meiner Familie
Small Atomes of themselves a World may make,
As being subtle, and of every shape:
And as they dance about, fit places finde,
Such Formes as best agree, make every kinde.
(Margaret Cavendish, 1653)Abbreviations
a. u. arbitrary units
Cbz Benzyloxycarbonyl
cmc Critical Micellar Concentration
COSY Correlated Spectroscopy
Cryo TEM Cryo Tranismission Electronmicroscopy
CA Cyanuric Acid
DCC N,N´-Dicyclohexylcarbodiimide
DCU Dicyclohexylurea
DEPT Distortionless Enhancement by Polarisation Transfer
DMAP 4-(Dimethylamino)pyridine
DMF Dimethylformamide
DOSY Diffusion Ordered 2D NMR Spectroscopy
EA Elemental Analysis
EDC N-(3-Dimethylaminopropyl)-N´-ethylcarbodiimide hydrochloride
EtOAC Ethyl acetate
FAB Fast Atom Bombardment
fc Flash Chromatography
HETCOR Heteronuclear Correlated Spectroscopy
HOBt Hydroxybenzotriazole
I Intensity of the Benzamide Fluorescence BandBA
IR Infra Red
MALDI Matrix Assisted Laser Desorption Ionization
mb Methylene Blue
MW Molecular Weight
MS Mass Spectroscopy
NBA 3-Nitrobenzylic alcohol
NMR Nuclear Magnetic Resonance
NOE Nuclear Overhauser Effect
PGSE - NMR Pulsed - Field Gradient Spin Echo Nuclear Magnetic Resonance
rt Room Temperature
sds sodium dodecylsulfate
TBAB Tetrabutylammoniumbromide
TEM Transmission Electron Microscopy
THF TetrahydrofuranTLC Thin Layer Chromatography
TM Target Molecule
TFA Trifluoroacetic acid
UV/Vis Ultraviolet/Visible
δ chemical shift
λ wavelengthContents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Calix[n]arenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Functionalization and Conformation . . . . . . . . . . . . . . . . 3
1.3 Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Amphiphilic Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Self Organization based on the Hydrogen Bonding Motif . . . . . . . . . 7
2 Proposal 9
3 Results and Discussion 12
3.1 A New Class of Amphiphilic Dendrocalixarenes . . . . . . . . . . . . . . 12
3.1.1 Synthesis of Malonyl Spacered Dendrocalixarenes . . . . . . . . 13
3.1.2 Synthesis of Dendrocalixarenes Containing a Terephthalic Acid
Spacer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Synthesis of Dye Labeled Amphiphiles . . . . . . . . . . . . . . . 22
3.1.3.1 Synthesis of a Pyrenyl- and a Porphyrindrimer . . . . . 22
3.1.3.2 Synthesis of a 1→ (2+1) Aminodendron . . . . . . . . 23
3.1.3.3 Synthesis of an Amphiphilic Pyrenyl-Labeled Calixarene 25
3.1.3.4 Synthesis of a Cationic Pyrene Derivative . . . . . . . 27
3.1.4 Inclusion Properties of the Apolar Deep Cavity Calixarenemimic 28
3.2 Investigation of the Supramolecular Architectures formed by Amphiphilic
Dendrocalixarenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Probing the Supra Molecular Architectures of Amphiphilic Den-
drocalixarenes via UV/Vis Spectroscopy . . . . . . . . . . . . . . 34
3.2.2 Determination of the Cmc of a Dendrocalixarene Containing a
Therephtalic Acid Spacer via Conductometry . . . . . . . . . . . 38
iContents
3.2.3 Investigation of the Cmc via Fluorescence Spectroscopy . . . . . 40
3.2.4 Fluorescence Properties of Pyrene and its Charged Derivatives . 41
3.2.4.1 Cmc of Sds and a Linear Calixaren Mimicof Pyrene and
its Charged Derivatives . . . . . . . . . . . . . . . . . . 43
3.2.5 Cmc of Two Dendrocalixarenes . . . . . . . . . . . . . . . . . . . 49
3.2.5.1 Cmc of the Dendrocalixarene Containing a Chromophoric
Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5.2 Influence of the Probes Pyrene and its Derivatives on
the Cmc a Chromophoric Calixarene . . . . . . . . . . 55
3.2.5.3 Capacity of Transport of the Dendroterephthalcalixarene 63
3.2.5.4 Cmc of a Malonyl Spacered Dendrocalixarene in the
Presence of Pyrene and its charged Derivatives . . . . 67
3.2.5.5 Capacity of Transport of the Malonyl Spacered Dendro-
calixarene . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.6 Investigation of the Cmc of Pyrene-Labeled Dendrimers . . . . . 76
3.2.7 Cmc of a Chromophoric Dendrocalixarene in the Presence of
Methylene Blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.8 Determination of the Aggregate Size of the Dendrocalixarenes
via PGSE NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.9 Determination of the Molecular Architecture of the Dendrocal-
ixarenes via TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.9.1 Bilayer Membranes build by Malonyl Spacered Dendro-
calixarenes . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.9.2 Aggregates Build by the Chromophoric Dendrotereph-
thalcalixarene . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Solid State Structure of a Dibenzylcalixarene . . . . . . . . . . . . . . . 97
3.4 Synthesis and Investigation of a Bis- and a Tetra-Cyanuriccalixarenes . 99
3.4.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.4.2 Selfassembly Properties of the Biscyanuriccalixarene using a HAMIL-
TON receptor porphyrin . . . . . . . . . . . . . . . . . . . . . . . 102
3.4.3 Selfassembly of Supramolecular Architecture using the Tetracya-
nuriccalixarene and a HAMILTON Receptors Porphyrin and a Fullerene
Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.4 Selfassembly of a Molecular Capsule Build by the Tetra- cya-
nuriccalixarene and a HAMILTON Receptor alkyne . . . . . . . . 109
iiContents
4 Summary 116
5 Zusammenfassung 120
6 Experimental Section 124
6.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Analysis of the cmc values determined via
fluorescence spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 Crystallographic Data of 25,27-Dibenzyl-11,23-di-t- butyl-26,28-dihydroxy-
5,17-dinitrocalixarene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7 References 173
8 Appendix 179
iii1 Introduction
1.1 Motivation
Already the people in Ancient Babylon 2800 BC knew how to make soap. In 1550 BC
the Ancient Egyptians used to bath regularly in soaped water, producing the soap by
combining animal and vegetable oil with alkaline salts. Since then the use of soap
grew. But soap is not only used for cleaning due to its ability to remove oil from water
and decrease the surface tension of water.
[1]Figure 1.1: Egyptian slaves washing clothes.
Soap consists of small amphiphilic molecules. All living systems are build up by am-
phiphiles and thus by lipids in a broader sense. Amphiphiles (Greek: αϕις, amphis,
both and ϕιλια, philia, love) are the main components of biological membranes. They
are able to form micelles, vesicles and liposomes when a critical concentration is ex-
ceeded. The formation of micelles in the human body is necessary for the uptake of fat
soluble vitamins and other essential substances. Hence the investigation of micelles
and their transport capacity is of great scientific interest. The synthesis of artificial
amphiphiles and the exploration of their drug delivery ability is a big challenge in or-
ganic chemistry. Herein the bowl shaped calix[4]arenes play a major role as they are
easily convertible. They can be linked with hydrogen bonding agents to investigate for
example the basic impetus of enzymatic reactions and cell formation. In a next step
they can be utilized to form water soluble supra molecular architectures and inclusion
complexes. By the connection of the hydrophobic calix[4]arenes with dendrons pro-
viding hydrophilic entities artificial water soluble systems can be established. These
1

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.