On some classes of birth and death processes in continuum [Elektronische Ressource] / Lukasz Derdziuk. Fakultät für Mathematik

Publié par

aszOnUnivSomeak?lt?tClassesorgelegtof2011BirMathematikthBielefeldAndonDeaziukthFPrf?rocessesderinersit?tContinuumvDissertationvzur?ukErlangungDerddesBielefeldDoktorgradesderngsb2nacGedrucPktDINaufest?ndigemalapiertheISO-9706.rueToamyFwamilukyW***c?aToDtherdzimemor1932y2010of4.Conuumtentacts.In49tro.duction.9tac1.Congurationthespaces.25.1.1.One-compproonen.t.conguration48spacesgenerator...functions.....function.Con...pro.....of......2.5.1.248Measures.on.5.and......t.....apuno.cess...cess.....2.2.1.....t.....43.oten.....with27.1.2.12.4.1Le.b.esgue-P.oissonandand.P.oissonbmeasure....t.....Time...1st....27with1.3.Harmonicruncationanalysisproon.conguration.spaces....2.1.3.yp.the.....41.t.con....28.1.3.1.F.unctionsofon.59.and....2.2.2.of.ss.........Prop.random.........2.4.mo.establishmen..29.1.3.2..tro-transform............Existenc.y.........The.of.........The.erator.........5130olution1.3.3functionsCorrelati.on52measures2nd.......2.5.pro.fecundit.....T...he.cess..............31.1.440TLywv-to-compeonenfortproconguration.space........
Publié le : samedi 1 janvier 2011
Lecture(s) : 26
Tags :
Source : D-NB.INFO/1015209068/34
Nombre de pages : 172
Voir plus Voir moins

aszOnUnivSomeak?lt?tClassesorgelegtof2011BirMathematikthBielefeldAndonDeaziukthFPrf?rocessesderinersit?tContinuumvDissertationvzur?ukErlangungDerddesBielefeldDoktorgradesderngsb2nacGedrucPktDINaufest?ndigemalapiertheISO-9706.rueToamyFwamilukyW***c?aToDtherdzimemor1932y2010of40
0
K
Xt
.duction.9.1randomConguration.spacesthe252.2.21.1.One-compTheonen52t.congurationtspaces............51...he.2.1.3.........ss2.5.1.2moMeasures.on.troExistencand....The...functions...pro.......yp...41.con.....of.....of.....Prop27.1.2.1.Le2.4bestablishmenesgue-P.oissontroand.P.oisson.measurey.....of.....erator.....olution27.1.32ndHarmonic.analysis2.5onfecunditconguration.spaces5.cess.......apuno.function.cess.....Con.cess28uum1.3.1.F.unctions.on.In2.2.1andpro.........t.pro.........43.of.oten.........tac29with1.3.2.ts.-transform..2.4.1.............48.and.........48.b.generator.......49.t......30.1.3.3.CorrelatiTimeonthemeasures....1st.functions.......tac.with.........ttenpro.Con.............31.1.440TLywv-to-compeonenfortproconguration.space........2.2.tac.pro.in.tin..............32.1.5.Mark42oConstructionvtheevcessolutions.in.CS..........42.Regulari.y.the.ce...................2.3.erties.the34p1.6tialVlaso.v.t.yp.e.scaling....46.Con.t.del.random.t...........48.In.duction..................36.2.CM.in2.4.2randomeenregularitvironme.n.t.39.2.1.In.tr.o.duction..2.4.3.sym.ol.the.................2.4.4.adjoin.op.....................2.4.5.ev.of39correlation2.1.1.Extended.generator....2.4.6.and.correlation.............58.Con.t.cess.random.y........39.2.1.2.T59runcationof0
L
^L
QC
^L
L
2
0
L
..........mo...ev...erator.....5.2.2.....4.2.2.asso....59.2.5.2ScalConstruction,.regularitotts-ty..........in...........ev.........e..59its2.5.3ergenceTheVlsym.btrool.ofofthebgenerator..b.semigroup.tro.......Construction.....mec.....ol....61882.5.4ductionThe.adjoin.tfunctionsop.erator4.3.1.......dual.....4.4.mo.....op...108.semigroup...e.....del62.2.5.5.Time.ev.olutiononof.thegecorrelation.function..erator...5.2.3........63.2.5.6.Preserv.ation.of.correlation87functionsthe.........4.2.1.of........66sym2.5.7.Equations.for.the.rst.and.secondSemicorrelationtofuncti.ons......4.3.of.........tro.............4.3.2.the.CONTENTS..68.2.6.Con.tacv-ttforpro.cess.with.random.mortalit108yof.6.b.....Con.the.....112.v-t.for....68.2.6.15Inetro5.1duction..............121.pro.....5.2.1.of.e..........ximation.its.......of..68.2.6.2.The.adjoinductiont.op.erator........................4.2.of.semigroup..........70.2.6.3.Time.ev87olutionTheofhanismthethecorrelationolutionfunction............87.The71b3ofGlaub.er-t.yp.e.dynamics.in.RE.75.3.1.Gibbs.measures..4.2.3.group.ciated...................93.The.olution.correlation...............102.Space.In76.3.2.P.ertu.rbation.theory..............102.The.of.op.2.5.1.................103.Vlaso.yp.scaling.the78del3.3.Pre-generators.of.Gl.au.b.er.t.yp4.4.1eingdynamicstheineratorREand.sym.ol.........4.4.2.v78of3.3.1rescaledSym.b.ols.of.the.gene4.4.3ratasooyprequationsthe.del...........117.P.yp.mo.121.In.duction......79.3.4.Construction.of.the.asso.ciated.semigroups........5.2Construction.the.cess...................12281Sym3.5olEvtheolutionnofratorthe.correlation.functions............122.Appro.op.and.sym.ol......85.4126TConstructionwtheo-comp.onen.t.ecological.mo.del.87.4.1130InV^ ^L L";ren
V^ ^L L";ren
141.the...aso...............v.....del...Dual....139.5.3.1.Scal.ed5.3.4opoerator.scaling.e.yp5.3.5v-typand.Vlaso.v.op5.3.3eratorsemigroupsVlaso.5.3.7...........139.5.3.2.Semi145groupConsergenceassofciatedsemigroupswith...........and151.Vl.v-tequationetheforCONTENTSmo......164.......CONTENTS8d
Z
d
R
X
X XX
X
generalycase:earsintheeinnteractingmoreparticleeensystems,(IPS)usefulhaer,vte(orbtheeetacnconusedctoThedescribreforvspaceariousnaturephenomena.isThe[Kun99]).usestudiedofnamicsIPSeralwxampleaseinitiallyofmsotivspace50atedcanbas,youtthethestatisticalonphlsysics,are,butcsooronconitproblem.btheecameeclearRiemannianthatthethevlisttinofKap10,ossibledelappli-hacationslikisetitionlong,withandongurincludesorksucihuumeldsaas,ationerforcallyethexample,althoughmedicineuse(infectionsucspreading,innitetumoursystemsgrobwth),proectonomptyor(agenmotapplicationsbased[Lig85]).mowdels),whensopciologymore(enbte-eyhatheviouralussystems)sandositionecologyto(poropulation,moFdels).yThemolatteranalogues)bbeingtheinsinertensivasakie[KLR07,devOhl07])elopmetactnAlso,tmoduringelasttroyforears.withHistoricallyor,mothe[Str09].theorytheofspIPSasarosetheasteractingasystemspartiotfGivthemanifoldprobabilitcyactheoryvandallwsubsetsaseinitiatedtsb,yonewalsoorksmoreofstructuresF.hSpitzere.g.,andgraphs.R.latticeL.turnedDobrushintoinetheandlatevided60'srighwidescthitheipurpfosematoystudydetheandsystems(seewithexampleGibbsTherestateshoasevequilibriumsituationsmeasures.theAontinuoustositionypicalisIPSappropriateconsistsevofnecessaryaordernoumvbtheerof(niteconsideredorThinnite)inofhiindistinguishablecasepparticlesspaceloassumedcatedbinosomeorpgenerallyositionaspmanifoldac(cf.eMan.ofSometimelatticesdelsittheirishamoreeappropriateeentoinusecontheuoutermspaceindividualsGlaubinsteadandofwpdy-articles(cf.toFKKZdescribKL05,eandtheconelememon[KS06].tssevofnewandelsIPS.vDbepinendingduced,onetheeconsystemstext,compthe[FKK09]pconosittdelijumpsonWspaceuseofctheationparticlesaccananalysisbframewefordiscretestudyorinconparttincleuous.inIntthenrthroughoutsthicase,thesis.oneenconsidersRiemanniantheductionso-calledthelatticongurespmoevoiserasdelsdened,theandofthelostandardniteexampleofof(wthecallspaceelemenisoftroong-9In2
x2X

P
2 = xx2
x
x2 X
X
2 2 1 2 +:=f( ; )2 :
1 2 + \ =;g = =
Z
X
LF () := d(x;) [F (nx) F ()] + b(x;) [F ([x) F ()]dx
Xx2
2 F L
d(x;)
b(x;)
b d
aviatsmeasurethe,awhereproRadoncloepro-isplathewDiracameasureonewithinthewhereasmassheevqualendstooftheTheseunitparagraph).yisconcensingletratedeonanositiveratorpra).urThatspatialalloywstheusthetoorequipsuctheordercongurationtspaceexampleswithencesthedescribvactionagueationtop(there-ologyoofitheparticlesspaceofofandallpartRadonthemeasurestoonawith(.mecThefunctiptheointappprs,otemcbirthessese,ai.e.btheofmeasurestheironopulation,,erarevcalledresourcestheeystatestheofandadelsgivspatialen(seesystem.theAnddynamicswhereasbPpre-generator,oissonwhicmeasuresbdescribceisthetstateyingoftaatsystemandwithouthindteraction,orGibbspmeasuresasareappropriateusedThetothestudydescribmoofdelsbindewhiccanhThthesecondparticlesrinvidesteractofvia,withfor).example,INTRaatpairelemenpandotenThtial.dynamicsFenordeterminedmoredeathdetailedHodescriptionifoffortheolutioncongura-opulationtionts,spacesclear,including,offorindividualsexamonlyple,andtheexistinggeometryalsoofum,externalwaseabilitreferlightodiseases.[Kun99],con[AKR98],additional[Kut03]alloanduothers.onsHaconsidered.vingmoinaremindoftbirth-and-deathwcesseso-comprefer-onenintprevioussystems,Theirwiseedinytroheuristicducethetheoftwo-chompdenedo-y:nentongurcsimpleongurcalledationfore,speacsieacongurationccup,ofwhelemenimostcshthereisindistinguishabledenedaraswhicaoftifyuidenacanindividuals,Oneopulationt).(innite)absenforisterpretedrestrictionanthisfunctionwhere.erstacofspopationeonguresc"death"multipleelementheoftoaccordingdtheoseathoppate,congurationwhereus,as,etheacpart.birthNearlyateallpronotionstheandhanismmethoospringdsductionusedtheinontheationssingleODUCTIONcompdescribingonenratetwhiccasenewcantsbear,etheirnaturallydistribution.translatedutothespoftogivesys-i.e.isebtheitstandframewrates.ork.wThiser,thesiswisconsiderdevexampleoteevdoftoptheofstudynofitsevecomeseralthatnewcycleIPSlifemoparticulardels,depmainlynotinspiredonbagey/thetheecologicalpapplications.butInonthenrstbtofwfactorsohcahapters,ail-moydica-suntionst,ofandtheIncontotactvprothecessinuence,andethewGlaubfer-tncypie10dynamicsarethebtrandom,wwo-considercomponen

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.