Para pluriharmonic maps and twistor spaces [Elektronische Ressource] / vorgelegt von Matthias Krahe

Publié par

2007Persit?tara-PluriharmonicFMapsvanhaftlicdderTvwistorMatthiasSpacesh-NaturwissenscDissertationhenzurakult?tErlUnivangungAugsburgdesorgelegtDoktorgradesonanKrahederMathematiscDErstgutacmhCort?ste17.7.2007r:VicenProf.agDr.henJost-HinricProf.hr.EsctehenTburgderZw?ndliceitgutacPr?fung:hter:K?hlerConmapstenara-pluriharmonictsmapsATcPknotwledgemenK?hlertspara-pluriharmonic528Insymmetrictro3.2.ductione73.4.Chapter511.3.6.PreliminariesChapter11y1.1.storP3.ara-complexinv33ectormapsspacespara-pluriharmoni113.3.1.2.tsPspacesara-complexpara-pluriharmonimanifoldsto13P1.3.spacesPclassicalara-hermitianspacesmetricstt*-bundlesand69para-K?hler3manifoldswi18lift1.4.ChapterPPara-quaternionicmapsK?hlertomanifoldsspaces193.1.Chapterara-pluriharmonic2.33PIsotropicara-K?hlercsubmanifolds40ofCanonicalpara-lemenquateandrniowistorn41iIsotropicccK?hlerinmanifoldsGrassmannians233.5.2.1.ara-quaternionicPsymmetricara-complex53symplecticTheandpara-quaternionicconsymmetrictact56structures4.23and2.2.mapsPBibliographara-K?hler73submanifoldsandandAthisckindsknoLawledgemeWnmtsandThishospital-wForkfruitfulwvouldfornotpseudo-RiemannianhaortvScediscussionsbChristianeenQuastwrittenfriendshipbutdiscussionsfornon-mathematics,themsupp.ortgestingandorkmoti-metricvtheationAugsburg,IandreceivforedyfromoutaciatednWumPbKer-erforofvpdiveople.outSpmathematicsecabiallcfamilyalparenlyburgIsug-wextendingouldwliktoesym-tospacesthank:formsuppyinadvisorMarie-Am?lieProf.wnDr.LarsVicenh?
Publié le : lundi 1 janvier 2007
Lecture(s) : 8
Tags :
Source : WWW.OPUS-BAYERN.DE/UNI-AUGSBURG/VOLLTEXTE/2007/677/PDF/KRAHE_PARA-PLURIHARMONIC_MAPS.PDF
Nombre de pages : 75
Voir plus Voir moins

2007Persit?tara-PluriharmonicFMapsvanhaftlicdderTvwistorMatthiasSpacesh-NaturwissenscDissertationhenzurakult?tErlUnivangungAugsburgdesorgelegtDoktorgradesonanKrahederMathematiscDErstgutacmhCort?ste17.7.2007r:VicenProf.agDr.henJost-HinricProf.hr.EsctehenTburgderZw?ndliceitgutacPr?fung:hter:K?hlerConmapstenara-pluriharmonictsmapsATcPknotwledgemenK?hlertspara-pluriharmonic528Insymmetrictro3.2.ductione73.4.Chapter511.3.6.PreliminariesChapter11y1.1.storP3.ara-complexinv33ectormapsspacespara-pluriharmoni113.3.1.2.tsPspacesara-complexpara-pluriharmonimanifoldsto13P1.3.spacesPclassicalara-hermitianspacesmetricstt*-bundlesand69para-K?hler3manifoldswi18lift1.4.ChapterPPara-quaternionicmapsK?hlertomanifoldsspaces193.1.Chapterara-pluriharmonic2.33PIsotropicara-K?hlercsubmanifolds40ofCanonicalpara-lemenquateandrniowistorn41iIsotropicccK?hlerinmanifoldsGrassmannians233.5.2.1.ara-quaternionicPsymmetricara-complex53symplecticTheandpara-quaternionicconsymmetrictact56structures4.23and2.2.mapsPBibliographara-K?hler73submanifoldsandandAthisckindsknoLawledgemeWnmtsandThishospital-wForkfruitfulwvouldfornotpseudo-RiemannianhaortvScediscussionsbChristianeenQuastwrittenfriendshipbutdiscussionsfornon-mathematics,themsupp.ortgestingandorkmoti-metricvtheationAugsburg,IandreceivforedyfromoutaciatednWumPbKer-erforofvpdiveople.outSpmathematicsecabiallcfamilyalparenlyburgIsug-wextendingouldwliktoesym-tospacesthank:formsuppyinadvisorMarie-Am?lieProf.wnDr.LarsVicenh?fertetheirCort?sitforandsuggestingabthett*-geometrytopicassoabfamilies,outBoltner,para-complexaltertreyn,wistoreterspacesandandstinforeinlthetheirsup-andpariousortandiertingnabNancyallandofHamandburgandmoyeadvisor,Prof.yDr.andJost-HinricyhtsEsc5henM
Z, Z M,
p∈M T Mp
M. Z
M.
3 1 1 4
CP →HP HP = S
3 3
CP ∼ F (C ) := SU(3)/S(U(1)×U(1)×U(1))1,1,1
2J : T M → T M, J = 1,p p p
±1
M ×M+ −
¯∂
cspeldacviouse.tUsuallyproblem,ienrosegivisofaisbrethebundleonoinvconeraPbirationallyR.ofwithhtheeldbreswithorablevtereryyhabysics,ducedspace-timesbmanifoldseingDolbcomplexspacesstructurequaternionics[Bu].onistrotoin:erecomplwhicmani-holutionsarestrucompatibleendowitharethesamegeometricastructiableturedimension;onlowara-complexdstlymethoellcarriesrelateda(rathercanonical1:almostofcomplexman-structure,ofwhosehinproblemtegrabilitanyocspacesanalenbpurpewdetransferrivmethoedarfromgethepara-complexproperbertiesx)ofsmowistorwithtinAnaimptoortancertainteapplicationhofmanifoldttewistoroftheoryTheisitheductconstrouctiondieofthemini-fact,malmanifoldandofpluriminimalform.submanifolds:para-quaternionicIne1982,eenBryasaninttheyusedsupthewiththeLorenbra-CMMS2].tioncwherethe1960s,manifolds,thepara-quaternionictoWkabactheesLemma,tothatconstructmanifold,mwistorinimalofsuryfwacsymmetricesK?hlerinaregoequivytrTheoosethethiswistorork[Br].toThissomehasthesebdseenpgeneralizeda-toomplextheometrycAo(ornstypructionolicofeminimamanifoldlasurfacesothinfoldvaariousofGrassmanniansvandcom-symmetriconspacesabctureygeometricconsideringahorizondtalwmapssucinthattovidecertain-eigendistributionsaginmanifoldsgandandagthedomdimension.ainsob[exampleBsR,proBS].ofThewreinmanifoldsterpre-rentationaofofBrysameanint'sevwpara-complexorkisbcallyythLaswsonP[L]andusingmanifoldsavbirationalrecenequivbalencestudiedTmathematicsductionwtroas.phywheretwistorarethetotoersymmetricprotheoriesmanifoldEuclideanvitthangratzian)In[CMMS1,tumChapterquanThistohapterhtainsapproacdenitionsanpara-complextopara-K?hlerplexand-opK?hlerisifolds.callye(Theoremeandpro1.oftopara-complextheeaultremarkwhicablestatesobservinationpara-complexthatthethetiseratoridealogeneralexactThe1.2.8aCorollarytranslate2.11).7ledM π: Z → M
−Z →M
Z
N⊂M
Z|N
g TN, NM
N
Z, f: N→ M
F: N→Z
Z
|
F
|
π
|
|
N M
f
N M
Z
M
2n+1C , C
M
f: N→M
N
(f )θ θ∈R
θ
f
thatwistorK?hlerbundleTheforthisthatonC2],one[AUnderofofchartsomplexa-cstructures,symmetricwhicbhcalledwiseTheneglectofhere).thereCort?sstructurehasdenotesaTcanonicalgeneralizedpara-isK?hlerrolestructure,(inandAtheevhorizonatalfamilydistributionyisbaequivpara-holomorphictheorem,conpara-complextactcstructurtifye.cAtheresubmanifoldraand(Theoremkseevskypseudo-Riemannianewistorssucwherehpara-thatconstructionthererexistsisappar-caseallelconstructsectionanofisAleymapsbbundleisthecalledcaseptarpara-holomorphica-cstepomplexthesubmanifoldthe.lenIfDarbthehpseudo-eacRiemanniantactmetriclownordinateshohiscon-nondegeneratetheontacteenabwherehasalthenpitnumbisChapteratheorypricarofa-bK?hlerthesubmanifolda,(notandK?hler).ittfollotowscthatwhere[BDM],para-complexisyaisotrminimala-pluriharmonicsubmanifoldin(i.para-e.spaces,theonstracepara-ofpara-quaternionictheifshapnicepara-complexopK?hlereratorconditions,isvzero).familyAntyofpara-complexciatesub-spmanifoldccurscanisbbealiftedfunction.tomainawillpara-holomorphicehorizonprotalofsubmanifoldpara-complexofaal.tettheinouxotherwhicwstatesords,onpara-complexhimmersionsconBlairmanifold,yexistbcalresultsoearliercarewhicprideneciselythethetactprowithjectionsstandardofonpara-holomorphicstructurehorizonlsotalisimmersions(actuallyExtendingstructuresmanifolds.theK?hlergebicofnar.omplexoerspara-quaterni2.1.11).3:wistorofoftheorysymmet->spaces.>notionwistortTcan2:eChaptertoductionsetting/complex/pseudo-RiemanniantrospaceItnecessarilyfolloquaternionicwsTherethataInwistorhasanalogousatthemostinhalfhaptethe2,dimensiontheofof0.immersions,plaandedtheypara-opiccomplexarsubmanifomapsldsfact,withthemaximalofdimensionquaternioniccorrespsymmetricondthesetoithecoincide).Leg-mapendrianofsubmanifoldsyofis8para-pluriharmonic,wing:ithharmoisotropicalongiserytocurvshoinw.thatcertainthesetheseLegenhadrieanone-parametersubmanifoldsmaniandwistorthereforeathethereadeformations,;assohdt.Acalledecialopic.oewhenefamilyfolloconstangivinenmaxisucmalmapspara-complexaresubmanifoldsisotrofWfoldprovarethelocallyEac.fullOuraimf: N → M N
σM = G/G Z → M
F: N → Z
F, f =π◦F
¯Z = (G/P)×(G/P),
G
P G/P
N
Z
¯N×N⊂ Z
n+2Gr (C )2
n+2 n+2F (C )→ Gr (C ),1,n,1 2
GL(p+q)/O(p,q)

(Theoremholomorphictactatoandspabrationstructurewistoristcanasubsetdenesfairlyspacett*-gesymmetricpara-complexwhereforthetendspara-complexofstructureisiswistorjustvicemara-)pluriharmonicultipli-olocationetbayt+1tonnewtheer,rstbirationalfactortoandonebanother.yGrassmannian-1withonwistortheerhorizonsewherecond.ChapterIfrelatedaeldisgicaisrealandlinearspacealgebraicgivgroup,splittingtheneigentoconsideriswabutparabtheolicmoreosubgroup,biholomorphismandothalence.useintheamapsrealK?hlerproejectivtheseepara-vthearietopyonding.isThisThevisotropicarietliftyprohasconstructionaasycelltt*-bundles.decompareositiona(Bruhattopdecompcalledosition)al-antitopwithfusion,exactly:onebijectioncelleendmapsinsymmet-theersa,largestsucdimension,manifolds:whicdeneshtheisinanopneedenpara-complexied(ev(atendoZariski-opven)yieldsandmation).denseconsubset.distribution;Novw,thisifex-manifoltisatheequivtThiswistorbspaceusedassotransferciatedconstructiontpara-pluriharmonicofromapara-quaternionicsymmetricsymmetricpara-quatern-cionictoK?hlerAmongspace,spacesthentheitcomplexturnspara-complexoutofthatenthereaniscorrespatconbrationtactspaceisomor-tphism3.3.6).bpara-pluriharmonicetiswtalee;njectiontheitsprothisductisK?hlerea.from4:map(Ppara-pluriharmonicmaps9closelyforto(para-)pluriharmonicgeometrictoineologicalsotrtheoriespic.toptogiccosetolosupalhoranometryciatedThere(calledainbHerwwtt*-bundlesrelate(para-)pluriharmonictoinconstructiontheassoricatedvandmapehcriterionenspacea-ccomplexwhic.admitorassowhofamilyfamil-admissiblewi[S2]).theewistoreinthiscomplexthewofpci-tfamiliesutgivfewatopara-complextheofmapthebbigicellsoandDierencesthethepara-theorycomplexFHeisethosenarebiarergthgroup.tIttheoryfollothewscase,tehat,oingivoenathedierencestthewistorcase:spacesParofomplextAwstructureoasymmetricofpara-quaternionictangenK?hlerbundlespacestoofbundlesthetheresamenodimen-tosion,thethentangentherebundleistimesaebiholomorphismsodenedcononenience,Zariskithis-opnoeninfor-subsetspreserving•
f f ×f :R×R→R×R± + −

1
R S .
G R→G.

nCP = SL(n+1,R)/S(GL(1,R)×GL(n,R)).
G/H →
σ σG/K G ⊂ K ( G0
σH G
jectivezassotheciatedspacesfamiPlies,denesproconvidedamplethatdtheanalyticsymmetricisspaceohasopnonpsymmetricositivsimplyengorpluriharmonicnonnegativ).emapscurvshoature.brationIn,thetiablepara-complexisconcanonicaltegy:xt,tothispara-isnotdiereannet:para-complexUnlessspacetheamilies:symmet-Assoricespaceandisnotat,exampletheretexistwipara-pluriharmonicmapmapsdenedwhicpara-holohpairdoisnot(whereadmitcenanofassotciatedolofamilyIn.trastMoreohermitianvspaces,er,hermitiantheareparameternecessarilyrangeconnected,ofex-thebassoiciatedthefamilyproisetromapsratherAllthanfInciate0.duction10Rdenotesgularity:xed-para-holomorphictpara-pluriharmonicofareCartannecessarilyvThistextalsothewslohatvthastorof(anspacesmorphicwillnotbgloballyeifdenedaasythefunctionssetdierenoftosmosmallothofcurvtheestralisymmetricerRiemannianatoelemeninandTopgrouptheConsequenointlyset,theininourolution).con

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.