Regulatory mechanisms in immune responses [Elektronische Ressource] / Petra Bochtler

De
Publié par

Universität Ulm Medizinische Fakultät Zentrum für Innere Medizin: Klinik für Innere Medizin I Ärztlicher Direktor: Prof. Dr. Guido Adler Regulatory mechanisms in immune responses Dissertation zur Erlangung des Doktorgrades der Humanbiologie (Dr.hum.biol.) der Medizinischen Fakultät der Universität Ulm Petra Bochtler Ulm 2008 Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin 1. Berichterstatter: Prof. Dr. Jörg Reimann 2. Berichterstatter: PD Dr. Frank Leithäuser Tag der Promotion: 04. Juli 2008 TABLE OF CONTENTS I TABLE OF CONTENTS LIST OF ABBREVIATIONS ...............................................................................................III INTRODUCTION .................................................................................................................1 The immune system ...................................................1 Lymphoid organs.2 T lymphocytes.............................................................2 Thymocyte development ............................................................................................................. 2 Regulatory T cells........................................................................................................................ 4 Liver immunity......................................................................................................................7 MATERIALS AND METHODS ....
Publié le : mardi 1 janvier 2008
Lecture(s) : 22
Tags :
Source : VTS.UNI-ULM.DE/DOCS/2008/6470/VTS_6470_8774.PDF
Nombre de pages : 76
Voir plus Voir moins
Universität Ulm Medizinische Fakultät Zentrum für Innere Medizin: Klinik für Innere Medizin I Ärztlicher Direktor: Prof. Dr. Guido Adler Regulatory mechanisms in immune responses
Dissertation zur Erlangung des Doktorgrades der Humanbiologie (Dr.hum.biol.) der Medizinischen Fakultät der Universität Ulm
Petra Bochtler Ulm2008
Amtierender Dekan:
1. Berichterstatter:
2. Berichterstatter:
Tag der Promotion:
Prof. Dr. Klaus-Michael Debatin
Prof. Dr. Jörg Reimann
PD Dr. Frank Leithäuser
04. Juli 2008
TABLE OF CONTENTS
TABLE OF CONTENTS
I
LIST OF ABBREVIATIONS ...............................................................................................IIIINTRODUCTION.................................................................................................................1The immune system ............................................................................................................1Lymphoid organs .................................................................................................................2T lymphocytes......................................................................................................................2Thymocyte development ............................................................................................................. 2Regulatory T cells........................................................................................................................ 4Liver immunity......................................................................................................................7MATERIALS AND METHODS ............................................................................................9Antibodies, chemicals & reagents........................................................................................9Mice...................................................................................................................................10Vaccination of mice............................................................................................................10Vaccination with antigen particles.............................................................................................. 10DNA vaccination ........................................................................................................................ 10In vivotreatment of mice....................................................................................................11Polyclonal activation of T cells ................................................................................................... 11Elimination of CD4 T cells.......................................................................................................... 11Adoptive transfer................................................................................................................11Collectingserum................................................................................................................11Determination of alanine aminotransferase .......................................................................11Isolation of cells .................................................................................................................12Isolation of lymphocytes from spleen, lymph nodes, thymus or bone-marrow ........................... 12Isolation of CD4+or CD8+T cells............................................................................................... 12Isolation of liver non-parenchymal cells ..................................................................................... 12Cell culture.........................................................................................................................12Suppression of T cell stimulation by regulatory T cells .............................................................. 13Flow cytometry (FCM) .......................................................................................................13Determination of the surface marker profile by FCM.................................................................. 13FCM staining for intracellular molecules .................................................................................... 13Foxp3 staining ........................................................................................................................... 14Detection of in vivo proliferating cells (BrdU incorporation)........................................................ 14CFSE labeling ........................................................................................................................... 14
TABLE OF CONTENTS
II
DimerXassay .......................................................................................................................... 14FCM analysis............................................................................................................................. 15Fluorescence activated cell sort ................................................................................................ 15Ag-specific CD8+T cell frequencies ..................................................................................15Enzyme-linked immunosorbent assay ...............................................................................15Statistical analysis .............................................................................................................16RESULTS..........................................................................................................................17Splenic regulatory T cells...................................................................................................17Foxp3+(wt) B6 mice and their steady state phenotype............. 17regulatory T cells in wild-type Surface phenotype of splenic CD4+Foxp3+T cells in wt B6 mice during polyclonal in vivo stimulation ................................................................................................................................. 18Splenic CD4+CD25hi ............................................................T cells suppress T cell responses 19Number of TRcells is age-dependent ................................................................................21MHC class II-independent regulatory T cells .....................................................................23CD4+TRcells in Aα-/-B6 mice ................................................................................................... 23Regulatory T cells in Aα-/-B6 mice are not thymus-derived ....................................................... 24CD4 Foxp3+TRcells from Aα-/-B6 mice respond to systemic, polyclonal in vivo activation ....... 26In vivo suppression of CD4 T cells in Aα-/-B6 mice downmodulates CD8 T cell responses....... 27CD4+CD25hiT cells from Aα-/-B6 mice are functional regulatory T cells................................... 29Regulatory T cells in the liver.............................................................................................30Hepatic Foxp3+TRmice are less activated than their splenic counterpartscells in wt B6  30 ..........CD4+Foxp3+T cells accumulate in the liver during polyclonal, systemic T cell activation ......... 32Transient rise of Foxp3+TRduring specific CD8 T cell responsescells  ..................................... 34Transfer of immune cells into HBs-tg B6 mice induce a liver-specific T cell response ............... 36Hepatic CD4+Foxp3+TRare not dependent on microbial constituentscells  .............................. 37Hepatic CD4+CD25hiTRcells are suppressive .......................................................................... 38TRcells in different knock-out B6 mice ..............................................................................40DISCUSSION....................................................................................................................42SUMMARY........................................................................................................................50ZUSAMMENFASSUNG ....................................................................................................51REFERENCES..................................................................................................................53ANNEX..............................................................................................................................66
LIST OF ABBREVIATIONS
LIST OF ABBREVIATIONS ALT alanine aminotransferase Ab antibody APC antigen-presenting cell APC allophycocyanin B6 C57BL/6 mouse strain BM bone-marrow BrdU bromodeoxyuridin BSA bovine serum albumin BTLA B and T lymphocyte attenuator cAMP cyclic adenosine monophosphate cat.no. catalogue number cDC conventional DC CFSE carboxyfluorescein diacetate succinimidyl ester cLN celiac LN ConA concanavalin A CTL cytolytic T lymphocytes CTLA-4 cytotoxic T lymphocyte antigen 4 DC dendritic cell DMSO dimethyl sulfoxide DN double-negative DNA desoxyribonucleic acid DP double-positive DR5 TRAIL-R2 EDTA ethyldiamine-tetraacetic acid ELISA enzyme-linked immunosorbend assay FACS fluorescence activated cell sort FCM flow cytometry FCS fetal calf serum FITC fluorescein isothiocyanate Foxp3 forkhead box P3 (forkhead/winged helix transcription factor) GF germfree GITR glucocorticoid-induced TNF receptor HBsAg hepatitis B virus surface antigen
III
LIST OF ABBREVIATIONS
HBs-tg HBV HCV HRP i.m. i.p. i.v. IDO IFN IFNAR IFNγR Ig IL iLN IPEX KO L LDM LN LPM LPS LSEC mAb MACS MHC min mLN NaN3NK NKT NPC NPPD ODN p pAb
tg B6 mice expressing HBsAg in the liver under albumin promoter control hepatitis B virus hepatitis C virus horseradish peroxidase intramuscular intraperitoneal intravenous indoleamine 2,3-dioxygenase interferon type I IFN receptor type II IFN receptor immunoglobulin interleukin inguinal LN immune dysfunction, polyendocrinopathy, enteropathy, X-linked knock-out liver liver digestion medium lymph node liver perfusion medium lipopolysaccharideliver sinusoid endothelial cell monoclonal antibody magnetic activated cell sort major histocompatibility complex minute mesenterial LN sodium azide natural killer cell natural killer T cell non-parenchymal cell nitrophenyl phosphated disodium salt oligodeoxynucleotideplasmid polyclonal antibody
IV
LIST OF ABBREVIATIONS
PBS PD-1 pDC PD-L1 PE PerCP PFA RNA rpm RT S SAP SEM SP P S SPF TCR Tefftg TGFβTHTLR4 TNF TRTRAIL TRAIL-R2 v/v w/v wks wt α α αGalCer
phosphate buffered saline programmed death 1 plasmacytoid dendritic cell programmed death-ligand 1 R-phycoerythrinperidin chlorophyll protein paraformaldehyde ribonucleic acid rounds per minute room temperature spleen alkaline phosphatase conjugated-streptavidin standard error mean single-positive HBsAg particle specific pathogen free T cell receptor effector T cell transgenic transforming growth factorβhelper T cell toll-like receptor 4 tumor necrosis factor regulatory T cell tumor necrosis factor-related apoptosis-inducing ligand TRAIL-receptor 2 volume / volume weight / volume weeks wild-type anti(used in combination with antibodies (e.g.αCD3))alpha alpha-galactosyl-ceramide
V
LIST OF ABBREVIATIONS
AMINO ACIDS A Ala C Cys D Asp E Glu F Phe G Gly H His I Ile K Lys L Leu M Met N Asn P Pro Q Gln R Arg S Ser T Thr V Val W Trp Y Tyr
alanine cysteine aspartic acid glutamic acid phenylalanine glycine histidine isoleucine lysine leucine methionine asparagine proline glutamine arginine serine threonine valine tryptophan tyrosine
VI
INTRODUCTION
INTRODUCTION
1
THE IMMUNE SYSTEM The immune system is an interaction of different cells and molecules to defend an organism from infectious microorganisms such as bacteria and viruses. Immune responses can be initiated both by whole microorganisms and non-infectious foreign substances such as macromolecules (e.g. proteins and polysaccharides). To successfully eliminate infections or foreign substances all steps during an immune response have to be well coordinated and regulated. During evolution the immune system developed two distinct defence mechanisms, i.e. innate and the adaptive immune system. Innate immunity (also called natural or the native immunity) is the first line of defence. Early reactions against microbes (1) prevent invasion of microbes through physical and chemical barriers (e.g. epithelial surfaces), (2) recognize conserved microbial structures such as bacterial LPS or viral RNA by neutrophils, macrophages, NK (natural killer) cells, or dendritic cells (DCs), (3) produce cytokines and/or (4) activate the complement system. In contrast to innate immunity, adaptive immunity (also called acquired or specific immunity) leads to the generation of specific effector cells that recognize a large number of distinct epitopes and can generate memory cells that are able to remember microbial structures for a better and more vigorous secondary response. Adaptive immunity is divided into humoral and cellular immunity. In humoral immunity B lymphocytes produce antibodies against microbial antigens to either neutralize microorganisms and/or target them for elimination. Cellular immunity mediated by T lymphocytes is directed towards the elimination of intracellular infections. On the one hand there are cytolytic T lymphocytes (CTL) that directly kill infected cells; on the other hand there are helper T lymphocytes (TH) that activate macrophages (to destroy phagocytosed microbes) and B cells (to produce antibodies against the pathogen).
INTRODUCTION
2
LYMPHOID ORGANS Lymphoid organs are structured tissues in which lymphocytes develop and adaptive immune responses are induced. Development of immune competent lymphocytes is restricted to primary lymphatic organs which are the thymus where T lymphocytes are generated and the bone-marrow (BM) where B lymphocytes are generated. After maturation naïve T and B cells migrate to secondary lymphatic organs. These are the spleen, diverse lymph nodes (LNs) and mucosal lymphatic tissues. In secondary lymphatic organs antigens are presented to lymphocytes in order to induce adaptive immune responses. T LYMPHOCYTES Thymocyte development T lymphocytes are generated in the thymus. Lymphoid progenitor cells enter the thymus and undergo multiple developmental stages before they are exported as mature T cells. During their development, thymocytes migrate from the cortex to the medulla (Figure 1). Different developmental stages are characterized by the expression of the coreceptors CD4 and CD8 starting with a CD4- CD8-double-negative (DN) population. These thymocytes begin to rearrange their T cell receptor (TCR) beta and alpha chains (which will recognize self-antigens bound to MHC molecules) followed by the expression of CD4 and CD8 on the thymocyte cell surface (double-positive (DP) thymocytes). TCRs of CD4+ CD8+thymocytes continuously interact with self-antigen-loaded MHC molecules presented by cortical thymic epithelial cells or dendritic cells. Thymocytes are deleted if the TCR-MHC interaction is too strong (negative selection). Low avidity interactions allow the thymocytes to develop into CD4 or CD8 single-positive thymocytes (positive selection). CD4+ CD8- are generated when they express a MHC class II-restricted TCR. thymocytes Differentiation into CD4-CD8+thymocytes is programmed if thymocytes express a MHC class I-restricted TCR (Figure 2). Positive selected thymocytes migrate to the medulla where autoreactive T cells that escaped the negative selection in the cortex are eliminated
INTRODUCTION
3
to ensure self-tolerance. Successfully matured T lymphocytes emigrate then from the thymus into the blood and secondary lymphatic organs.
Figure 1.T cells. Lymphoid progenitors from the bone-marrow enter Thymic development of CD4 and CD8 the thymus as double-negative (DN) cells. During their journey from the cortex to the medulla they rearrange diverse T cell receptors (TCR) recognizing self-antigens bound to major histocompatibility complex (MHC) molecules presented by cortical epithelial cells. Following successful rearrangement of TCRs, thymocytes start to express the CD4 and CD8 coreceptors (double-positive (DP) thymocytes). CD4+ CD8+ thymocytes continuously interact with antigen-presenting cells. Strong TCR-MHC interactions lead to negative selection (cells undergoapoptosis); low signalling results in death by neglect. Intermediate signalling initiates differentiation to CD4 or CD8 single-positive (SP) T cells. Adapted from Germain [1].
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.