Relativistic laser pulse compression and focusing in stratified plasma vacuum systems [Elektronische Ressource] / vorgelegt von Christoph Karle

onRelativisticderlasererpulseD?sseldorfDinslakandFfoh-Heine-UnivorgelegtinKarlestratiedDezemplasma-vhenacuumakult?tsystemsInaugural-Dissertationersit?tzurvErlangungvdesChristophDoktorgradesausderenb2007t:Auskdemtin:Institut25.01.2008f?rSpatsctheoretiscHohemPhD?sseldorfysikDr.IKderDr.hh-Heine-Univagersit?thenD?sseldorfersit?tGedrucReferenktProf.mitK.-H.derhekGenehmigungorreferenderProf.M.bruchenTFderakult?t?ndlicderPr?fung:h-Heine-UniverRelativisticlaserTheopulserleInstitutressionPhysikandrffo2007inf?rstratiedretischeplasma-vacuumIsystemsD?sseldoChristophKa4.Contents.1theIntroBoundaries.7.2oMovs.del.equationsransversal10.2.1..Fluid-Maxw.ell.equationsStratied.....116.equation...lamen.......with.ers...plasma...mo.tages...transv...tation...pulse10of2.2.Equations.for.the4.4w.eakly.relativistic.regime2D.......T.ers.of.......een.....5.3.v.acuum.6.113plasma2.3.Slo.wly96v.arying.en.vtrollingelop.e.appro.ximationmo.2D.122.w...Gro.......5...ransv.instabilit...........4.5.3D16.3.Pulse..ression.in.one76dimensionfo18la3.15.1Mopropdellaequations.in.1D......82.et.acuum...........of.w.transv.in.
Publié le : lundi 1 janvier 2007
Lecture(s) : 22
Tags :
Source : DOCSERV.UNI-DUESSELDORF.DE/SERVLETS/DERIVATESERVLET/DERIVATE-7012/DISSERTATION.PDF
Nombre de pages : 135
Voir plus Voir moins

on
Relativistic
der
laser
er
pulse
D?sseldorf

Dinslak
and
F
fo
h-Heine-Univ

orgelegt
in
Karle
stratied
Dezem
plasma-v
hen
acuum
akult?t
systems

Inaugural-Dissertation
ersit?t
zur
v
Erlangung
v
des
Christoph
Doktorgrades
aus
der
en

b

2007
t:
Aus
k
dem
tin:
Institut
25.01.2008
f?r
Spatsc
theoretisc
Ho
he
m
Ph
D?sseldorf
ysik
Dr.
I
K
der
Dr.

h
h-Heine-Univ
ag
ersit?t
hen
D?sseldorf
ersit?t
Gedruc
Referen
kt
Prof.
mit
K.-H.
der
hek
Genehmigung
orreferen
der
Prof.

M.



bruc
hen
T
F
der
akult?t
?ndlic
der
Pr?fung:

h-Heine-Univer
Relativistic

laser
Theo
pulse
rle

Institut
ression
Physik
and
rf
fo


2007
in
f?r
stratied
retische
plasma-vacuum
I
systems
D?sseldo
Christoph
Ka4.
Contents
.
1
the
Intro
Boundaries

.
7
.
2
o
Mo
vs.
del
.
equations
ransversal
10
.
2.1
.

.
Fluid-Maxw
.
ell
.
equations
Stratied
.
.
.
.
.
116
.
equation
.
.
.
lamen
.
.
.
.
.
.
.
with
.
ers
.
.
.
plasma
.
.
.
mo
.
tages
.
.
.
transv
.
.
.
tation
.
.
.
pulse
10
of
2.2
.
Equations
.
for
.
the
4.4
w
.
eakly
.
relativistic
.
regime
2D
.
.
.
.
.
.
.
T
.
ers
.
of
.
.
.
.
.
.
.
een
.
.
.
.
.
5.3
.
v
.
acuum
.
6.1
13
plasma
2.3
.
Slo
.
wly
96
v
.
arying
.
en
.
v
trolling
elop
.
e
.
appro
.
ximation
mo
.
2D
.
122
.
w
.
.
.
Gro
.
.
.
.
.
.
.
5
.
.
.
ransv
.
instabilit
.
.
.
.
.
.
.
.
.
.
.
4.5
.
3D
16
.
3
.
Pulse
.

.
ression
.
in
.
one
76
dimension
fo
18
la
3.1
5.1
Mo
prop
del
la
equations
.
in
.
1D
.
.
.
.
.
.
82
.
et
.
acuum
.
.
.
.
.
.
.
.
.
.
.
of
.
w
.
transv
.
in
.
90
.
systems
.
dv
.
m
.
y
.
.
.
.
.
.
.
.
.
.
.
Optimization
.
fo
.
.
.
.
18
.
3.2
.

.
metho
6.3
ds
ersal
.
.
.
.
.
.
.
.
.
.
.
7
.
V
.
fo
.
ression
.
B
.
instabilit
.
Stationary
.

.
v
.
.
.
.
.
122
.
rate
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
56
.
T
.
ersal
20
tation
3.3
y
A
.

.
and
.

.
of
.
the
.
n
.
umerical
.
sc
.
heme
.
.
64
.
Other
.
/
.
instabilities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
24
.
3.4
.
Pulse
.

5
in
ransversal
1D

.
plasma
.
y
.
82
.
F
.

.
erties
.
plasma
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.2
.
b
.
w
.
v
.
and
.
.
.
.
.
.
.
.
.
.
32
.
4
.
Pulse
.

.
ression
87
in
Propagation
t
short
w
long
o
a
dimensions
elength
44
ersal
4.1
des

v
Metho
.
ds
6
.
plasma-vacuum
.
95
.
A
.
an
.
of
.
ultiple
.
la
.
ers
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
6.2
.
of
.
ersal
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
44
.
4.2
.
A
98

Con
and
transv

lamen
of
.
the
.
o
.
v
.
er-all
.
2D
.
sc
.
heme
.
.
.
.
.
.
105
.
Conclusion
.
A
.
AM
.
del
.
r
.

.
in
.
119
.
T
.
lamentation
52
y
4.3
B.1
Pulse
solution

the
in
nonlinear
2D
a
.
e
.
.
.
.
.
.
.
.
.
.
.
B.2
.
wth
.
of
.
instabilit
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
123
.
.125
Contents
129
C
Bibliography
3D
6
instabilitiesQ
Q
14 2I ∼ 10 W/cm
2 18 2 2Iλ ∼ 10 Wμm /cm0
μm
18 2I∼ 10 W/cm
6 12
10 30
b
to
group
surgery
en
and
the
ha
and
v
of
e
fron
b

ecome
whic
an
reac
indisp

ensable
b
to

ol
(or
in
the
scien
o
tic
gets

ossible
h
laser
due
use
to
to
the
hing

y
t
the
nature
e
of
same
laser
the
radiation.

During

the
original
rst
ed
t
stretc
w

o
disp


the
pulses
laser
univ
in
using
tensities
ab
w
laser
ere
th

in
rapidly
A
through
b
the
h
in

tro
ed

a
of
y
from
er
-switc
whic
hing
hing
and
pulse
mo
the
de
The
lo
amplied

the
king.
is
The
us
pulse
y
length
w

a


,
ha
from
exactly

fully
to
pulses

ecome
with
e
applications
Still,
-switc
e
hing
of
and
w
fem
to

lasers
with

mo
in
de
v
lo
1960,

of
k-
in
ing.
allo
This
relativistic
allo
The
w
of
ed
the
in
the
tensities
a
to
to
reac
thousand
h
a

This
umerous
ac
n
y
elding,
propagate
w
with

elo
pro
ersion
material

applications,
b
storage
a
data
has
and
After
already
frequencies,
lead
of
to
red-shifted,
relativistic
k
eects
is
for
v
electrons
hed

b
in
reac
the
limit
eld
medium.
of

infrared
ersed
lasers,
is
as
to
the


to
in
of
tensit
ac
y
this
for
.
relativistic
h
electrons
high,
is
and
digital
e
unication,
matc

otherwise

is
for
ensated.
used

are
higher
y
terms
da
ortan
to
ha
Lasers
b
tous.
to
ubiqui-
is
ecome
ac
b
ery
has
the
hnology
1
.
allo
If
ed
a
ersities
laser
build
pulse
of
at
(e.g.
this
Ti:sapphire
in
that
tensit
h
y
tensities
propagates
o
through
e
a
the
gas,
in
it
the
is
tion

v
ionized
and
and
us
a
w
plasma
study
is
eects

plasmas.
The

relativis-
hanism

CP
mass
is

stretc
then
of
leads
pulse
to
y
nonlinear

eects,
thousand
lik
a
e
undred
self-mo
b
dulation

and
linear
self-fo
hirp.


similar
e
to
hiev
nonlinear
b

letting
for
pulse
b
through
ound
medium
electrons
large
in
v
a

medium.
disp
Since
lik
t
an
ypical
b

or
media
y
sho
at
w
grating,
strong
h
nonlinear
the
eects
eect.
for
stretc
in
the
tensities
the
this
t
high,
the
in
is
tensities
while


not
of
b
pulse
e
blue-shifted


further
ersa).
un
stretc
til
pulse
the
then

e
hnique
without
of
hing

saturation
hirp
of
ed

pulse
After

the
(CP
hirp
A)
rev
w
and
as
pulse
dev
th
elop

ed
its
in
length.
1985.
b
This
the

Since
hnique
orders
enabled
magnitude
a
ere

hiev
further
in

w
in
y
laser
T
in
reac
tensit

y
this
.
the
Large
her
laser


v
w
to
orld
e
wide
hed
no
,
w
the
reac
hirp
h
not
in

tensities
This

more
diagnostics
for
shorter

as
high
order
y
ersion
a
b
e
imp
ts
t,
y
h

v
deformable
to
and
e
temp
ensated,
phase
o.
(Dazzler).
it
v
p
t
to
CP
hiev
is
v
so
short

in
CP
range
(OPCP
Intro
This
to
d
w
fem
ell
with
o
qualit
v
w
er
v
one
fron
P
b
eta
using
w
gratings,
att.
mirrors
CP

A
oral
also


A
the
arian

of
of
A
high
the
p

o
parametric
w
A
er
A).
lasers
metho

7
tly100keV
MeV
MeV
∼ 20MV/m
100GV/m
1GeV
with
is


for
in
with
the
e
saturated
els
range
y
of
(X-ra
the
the
medium,
the
the
er


is
the
lo
the
w
through
er
of
than
the
for
ulations,
standard
sim
CP
is
A.

The
particles
gain
are
bandwith,
for
on
the
the

other
material
hand,
tional
is
e
larger
short
than
of
for
found,
CP
ha
A.
in
F
(PIC)
o
relev

er
the
to
ultrain
v
tense
densit
pulses
ed
pro
the

smaller
in
This
this
only
w
electrons
a
are
y
ecause
on
ak
solid
ersal
or
in
gaseous
plasma
targets
no
results
hanism,
in
for
the
of
formation
and
of
energies
o
to
v

erdense
lasers,

and
h


[6,
the
references.
pulse)
een
or
o
underdense
also
plasmas
erimen

used
h

allo
ysics
w
large
pulse
[55
propagation)
harged
resp
electrons
ectiv
their
ely

.
grid.
The
as
h
equations
uge
grid.
amoun
in
t
the
of
usually

um
t
plasma,
radiation
ely
in
ulations.
a
the
small
8
v
32,
olume
ak
pro
ecially


man
the
y
the
in
pro
teresting
uge
nonlinear
eld
eects
is
with
a
in

teresting
ionized
appli-
there

due
The
wn
o

v

erdense
v
plasma

surface
pump
of
in
a

solid
and
irradiated
up
b
is
y
v
a
in
short,
X-ra
high
free

Ov
trast

pulse,
whole
strongly
laser-plasma

b
and
example,
pro
,

y
higher
sim
harmonics
e
of
to
the
eects
laser
in
frequency
They
.
ensable
More
of
than
Mostly
pulse
des
the
this
h
ecause
whic
of
in
t


harmonics
to

um
b
pro
e
In
pro
electrically

are
in
del
this
ions
w
F
a
ositions
y

with
densit
resulting
on
pulse

lengths
is
in

the
Maxw

are
or
the
ev
up
en
are
zeptosecond
olated
range
ositions
[26,
um
3].

These
uc
pulses
the

er
b
a
e
their
used
to
for
noise
the
PIC
diagnostics
the
of

ultrafast
binary
ph

ysical

pro
[18,

21
Irradiation
W
of
eelds
a
esp
thin
suited
metal
particle
foil
b
b
in
y
pro
an
of
in
w
tense
eeld
laser

pulse
h
leads
transv
to

a
of
large
laser

transformed
eld
to
b
longitudinal
et
eld.
w
the
een
is
the
b
foil
denition,
and
are
thermal
problems
electrons
to
b
breakdo
ehind
at
the

foil
nonlinear
that
of
where
as
pro


en
b

y
elds
the
pulse.

a
ts

that
the
ha
more
e
b
een
sustained
hed
electron
In
of
the
to
electrons
amplied
then
e

v
b
b
y
reac
the
[42].
pulse.
undulators
Protons

or

ions
b
adheren
used
t
generate
to
ery
the
and

tense
k
t
of
ys
the
y
foil
electron
are
XFEL).
easily
erviews

laser
b
hnology
y
the
this
eld
eld
nonlinear
up
in
to

tens
e
of
for
nonlinear
in
a
52
uses

[31,
man
58,
further


These
ulations
protons
v

b
b
vital
e
understand
used
nonlinear
for
that
time

resolv
laser-plasma
ed

imaging,
are
b
indisp
ecause
for
protons
design
pro
exp

ts.
at

dieren

t
are
times
for
ha
sim
v
b
e
they
dieren
most
t
the
energies.
an
Protons
ph
of
and
a
b

scaled
energy
a

n
b
b
e
of


and

fo
PIC

ulations,
b

y

a
used
laser
mo
irradiated
the

and
metal
in
foil
plasma.
[63
rom
,
p
24
and

elo
In
the
the
t
future
y
the


a
of
This
ligh
t
t
y
ions,
used
for
a
example
term

the
on,
ell
to
that
sev
solv
eral
on
h
same
undred
The

dated
Intro
elds
1.
then
to
terp
date
to
p
p
and
of
elo

The
up
is
their
lik
ositions
ely
v
p

ossible.
n
In
b
gaseous
of
targets
is
the
m
pulse
h

than

n
a
b
large
of
amplitude
in
plasma
real
w
hence
a
name.
v
leads
es,
relativ

high
the
lev
w
in
ak
sim
eeld

of

the
in
pulse,
through
that
grid,


b
not
e
but
used
tofor

et
b
in
e
thesis
added
the
b
for
y
the
means

of
e
Mon
the
te
instabilities
Carlo
of
metho
pro
ds.
to
F
the
or
will
parameter
after
regimes,

where
relativistic

to
eects
v
are
to
negligible,

uid-dynamical
la

plasma-v
des
pulses.

t
b
A
e
next
used
e
instead.
n
They

assume
at
a
in
xed
a
v

elo


transv
y
b
distribution
b
for
y
electrons

and
imp
ions,
n
e.g.

a
will

one
or
v
an
h
isothermal
a
plasma.
short
Since
v
they

are
ossible
not
resulting
particle
large
based,
follo
sim
mo
ulations
parameter
with

uid
b

for
des
elop
are
The
generally
are
less
of
noisy

than
v
with

PIC
er

6
des.
acuum
The
ed

tial


of

uid
has
sim

ulations
sim
is
during
also
plasma

and
tly
[9
lo
ransv
w
y
er.
t
F
Th
or

the
geometries
study
With
of
w
a
the
particular
pulse
parameter
more
regime,
ers
further
in
simplications
een.
of
y
the
systems
uid-dynamical

mo
v
del
in

further
b
t
e
her
p
it
ossible.
e
This
the
again
amplify

with
the
to

bandwith.

organized
of
In
sim
hapter
ulations
equations
and
eakly
enables
will
the
ed.
in
3
v
1D
estigation
discussed.
of
metho
a
sim
large
e
range
in
of
to
parameters
mo
in
sim
the
elop
particular
b
regime.
hapter
In
h
this
and
thesis
are
w
The
e
ersal
study
erties
the
la
pulse
studied

5.
prop
out
erties
stratied
of

plasma
dev
la
the
y
9
ers.
of
Due
pulse
to
the
the
ersal
relativistic
of
in
pulse

to
with
e
the
in
plasma,
the
a
ulations,
laser
oth
pulse
propagation

a
b
la
e
er
longitudinally
in

acuum
do
,
wn
T
to
ersal
a
pla
single
an
laser
ortan

role,
in
o.
length,
us
with
umerical
a
des

2D/3D
onding
are

.
in
this
in
des
tensit
e
y
study
.
propagation
PIC
a
sim
through
ulations
or
sho
plasma
w
y
that
with
energy
acuum

b
t
w
pulse


la
is
ered
limited
acuum
to
are
w
promising
eakly
to
relativistic

in
ery
tensities
and
[59],
tense
at
With
least
impro
for
emen
the
of

stretc
initial
/
pulse.
gratings
In
migh
this
b
range
p
of
in
in
future
tensities
further
the
the
main
pulses

OPCP
of
due
nonlinearit
its
y
gain
is
The
the
is
relativistic
as
mass
ws.

the
due

to
the
the
del
quiv
for
er
w
motion
relativistic
of
regime
the
b
electrons
deriv
in
In
the
hapter
eld
pulse
of
in
the
will
laser.
e
The
The
p
umerical
onderomotiv
ds
e
1D
force
ulations
of
b
the
dev
laser
ed
only
this

hapter,
small
o.
p

erturbations
dications
in
2D
the
ulations
electron
dev
densit
ed
y
the
.
eginning
W

e
4,
will
whic
deriv
the
e

mo
instabilities
del
2D
equations
in
that
estigated.

lens-lik
the
transv
relev
fo
an
prop
t
of
nonlinearities
plasma
and
y
dev
are
elop
in

hapter
t
Chapter
n
ab
umerical
pulse
metho
with
ds
plasma-v
for
systems
them.
bines
T
ideas
o
elop
fully
in
assess
preceding
the
hapters.
p
otenA φ
A = 0
A φ
21 ∂ 1 ∂ 4π
A−ΔA = ∇φ+ j
2 2c ∂t c∂t c
Δφ = 4πρ .
Zi
j =e(Znv −n v ) ,i i i e e
ρ =e(Zn −n ) .i i e
0 0(v = 0) Zn =n ≡ni i 0i e
j =−en v ,e e
ρ =e(n −n ) .0 e
(T = 0)

n +∇(n v ) = 0e e e
∂t
∂ 1 ∂A 1
+v ∇ P =e −∇φ− + v ×(∇×A)e e e
∂t c ∂t c

rm
and
the
than
basis
Com
fo
oint
r
or
most
velo

and
simulations

in
a
the
of
p
allo
resent
thus
w
not
o
equation
rk.
equations
Most
of
analytical
w
mo
the
dels
w
will

b
lo
e

based
with
on
del
the
and

that
nonlinea
Fluid-Maxw
r

Schr?
balance
dinger
r
equation
to
that
ropagation,
is
analytical
derived
use
at
fo
the
ell
end
version
of
will
this
PIC-simulations.


using
that
the
er
slo
r
wly
xed
va
fo
rying
But
envelop
of
e
rticle
app
not
ro
simplies
ximation.
y
2.1
the


Fluid-Maxw
equations
ell
.
equations
with
The
uit
Maxw
momen
ell-equations
a
for
elds
the
uid
p
Maxw
oten
equations
tials
re
Mo
pulse
and
eakly
2
the
in
fo
resulting
will
The
equations
10
equations
are
equations
electrons.
Fluid-Maxw
plasma
of
the

of
derive

e
mass
First
relativistic
e.g.
eak
noise
w
less
a
have

simulations
only
runtimes
that
w
intensities

laser
F
r
a
fo
ion
ossible
kground
p
w
is
they
simplication
plasma.
further
the
A
heating
.

del
pa
equations
mo
The

(2.1)
this
where
to

distribution
is

plasma

the

that
eects
assuming

(2.2)
do
T
ell-
o
This

sta
the
bined
uid
the
equations
tin
for
y
densit
and
y
tum
and
of
momen

tum
rting
of
the
a
electron
t
fo
w
ell
o
the


onen
uid
t
the
plasma
a
of
p
electrons
(2.3)
and
descriptions
y
w
b
and
-times
simulations

r
harged
r
ions,
later
w
e
regime
that
the
dell
fo
mo
dierent
relativistic
r
e
of
use
derivation
the
the
follo
fo
wing
p
denitions
Coulom
(2.4)
b
gauge

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.