Self-Assembly of Metal-Centered Supramolecular Architectures with Orthogonal Binding Motifs [Elektronische Ressource] / Felix Grimm. Betreuer: Andreas Hirsch

De
Self-Assembly of Metal-Centered Supramolecular Architectures with Orthogonal Binding Motifs Dissertation 2011 Felix D. M. Grimm Self-Assembly of Metal-Centered Supramolecular Architectures with Orthogonal Binding Motifs (Selbstorganisation von Metall-zentrierten Supramolekularen Architekturen mit Orthogonalen Bindungsmotiven) Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Felix D. M. Grimm aus Schwabach Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 09.12.2011 Vorsitzender der Prüfungskommission: Prof. Dr. Rainer Fink Erstberichterstatter: Prof. Dr. Andreas Hirsch Zweitberichterstatter: PD Dr. Norbert Jux Meinem Doktorvater, Prof. Dr. Andreas Hirsch, gilt mein besonderer Dank für sein stetes Interesse am Fortgang dieser Arbeit sowie für seine zahlreichen Anregungen und die Bereitschaft zur Diskussion. Die vorliegende Arbeit entstand in der Zeit von August 2006 bis Juni 2011 am Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) der Friedrich-Alexander-Universität Erlangen-Nürnberg.
Publié le : dimanche 1 janvier 2012
Lecture(s) : 27
Source : D-NB.INFO/1018801383/34
Nombre de pages : 196
Voir plus Voir moins


Self-Assembly of Metal-Centered
Supramolecular Architectures with
Orthogonal Binding Motifs

Dissertation 2011




















Felix D. M. Grimm
Self-Assembly of Metal-Centered Supramolecular
Architectures with Orthogonal Binding Motifs
(Selbstorganisation von Metall-zentrierten Supramolekularen
Architekturen mit Orthogonalen Bindungsmotiven)



Der Naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg
zur
Erlangung des Doktorgrades Dr. rer. nat.












vorgelegt von
Felix D. M. Grimm
aus Schwabach Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der
Friedrich-Alexander-Universität Erlangen-Nürnberg
























Tag der mündlichen Prüfung: 09.12.2011

Vorsitzender der Prüfungskommission: Prof. Dr. Rainer Fink
Erstberichterstatter: Prof. Dr. Andreas Hirsch
Zweitberichterstatter: PD Dr. Norbert Jux
Meinem Doktorvater, Prof. Dr. Andreas Hirsch, gilt mein besonderer Dank für
sein stetes Interesse am Fortgang dieser Arbeit sowie für seine zahlreichen
Anregungen und die Bereitschaft zur Diskussion.





















Die vorliegende Arbeit entstand in der Zeit von August 2006 bis Juni 2011 am
Department of Chemistry and Pharmacy & Interdisciplinary Center for
Molecular Materials (ICMM) der Friedrich-Alexander-Universität Erlangen-
Nürnberg.

















“1) Mathematics is the language of nature.
2) Everything around us can be represented and understood through numbers.
3) If you graph the numbers of any system, patterns emerge.
Therefore, there are patterns everywhere in nature.
Evidence: The cycling of disease epidemics; the wax and wane of caribou
populations; sun spot cycles; the rise and fall of the Nile.”

Sean Gullette (as Max Cohen) in “ ” (written and directed by D. Aronofsky, 1998).

pList of Abbreviations

a. u. arbitrary units
Boc tert-butoxycarbonyl
Boc O di-tert-butyldicarbonat 2
Bn benzyl
bpy (4,4’-)2,2’-bipyridine
Bu butyl
d doublet/days
DCC N,N‘-dicyclohexyl carbodiimide
DEPT Distortionless Enhancement by Polarization Transfer
anthracen-1,8,9-triol dithranol
DLS dynamic light scattering
DMAP N,N‘-dimethyl aminopyridine
DME dimethoxy ethane
DMF N,N‘-dimethyl formamide
DMSO dimethyl sulfoxide
EA elemental analysis
ec end cap
EDC N-ethyl-N’-(3-dimethylaminopropyl)-carbodiimide hydrochloride
eq. equivalents
Et O diethyl ether 2
EtOAc ethyl acetate
FAB Fast Atom Bombardement
HB hydrogen bonding
HEEDTA hydroxyethyl-(ethylendiaminetriacetic acid)
HETCOR hetero-nuclear correlation spectroscopy
HOBt 1-hydroxy benzotriazole
HPLC High Performance Liquid Chromatography
Hz Hertz
IR infrared
IUPAC International Union of Pure and Applied Chemistry
J scalar coupling constant in Hertz association constant Kass
m multiplet
m/z ratio of mass-to-charge
MALDI-TOF Matrix assisted laser desorption ionization – time of flight
Me methyl
MeOH methanol
MLCT metal-to-ligand charge transfer
MS mass spectroscopy
NBA 3-nitrobenzylic alcohol
NHS N-hydroxy-succinimide
NMR nuclear magnetic resonance
Pc phthalocyanine
PFG Pulsed Field Gradient
PG protecting group
Ph phenyl
ppm parts per million
pyr pyridine
R radius of gyration G
R hydrodynamic radius H
RT room temperature
s singlet
sin sinapinic acid
SLS static light scattering
t triplet
tert-Bu tert-butyl
TFA trifluoro acetic acid
THF tetrahydrofurane
tht tetrahydrothiophene
TLC thin-layer-chromatography
tpy 2;2’:6’2’’-terpyridine
UV/Vis Ultraviolet/visible
chemical shift in ppm δ
wavelength in nm λ
-1
~ wave number in cm
nTable of Contents

1 Introduction ........................................................................................................................ 1
1.1 What is Self-Organization? ........................................................................................ 1
1.2 Principles of Self-Assembly....................................................................................... 3
Self-Assembly of Molecular to Macroscopic Components ........................................... 4
1.3 Supramolecular Assemblies ....................................................................................... 6
1.3.1 Hydrogen Bond Supramolecules........................................................................ 6
1.3.2 Metal Complexation-Mediated Self-Assembly................................................ 11
1.3.3 Supramolecular Polymers ................................................................................ 14
2 Proposal............................................................................................................................ 19
3 Results and Discussion..................................................................................................... 21
3.1 Bipyridines ............................................................................................................... 21
3.1.1 Synthesis of C6-AB (17)................................................................................. 22 2
2+3.1.2 Preparation of [Ru(C6-AB ) ] ....................................................................... 27 2 3
2+3.1.3 Complexation behavior of [Ru(C6-AB ) ] .................................................... 31 2 3
NH shifts and association constants ............................................................................. 34
Cooperativity of binding sites ...................................................................................... 38
Scatchard plots ............................................................................................................. 40
Job’s plots..................................................................................................................... 41
Species distributions..................................................................................................... 43
Fluorescence measurements......................................................................................... 44
Complete Self-Assembly.............................................................................................. 46
3.2 Terpyridines ............................................................................................................. 48
3.2.1 Syntheses of the orthogonal AB building blocks ............................................. 49
Syntheses of metallated compounds ................................................................................ 51
3.2.2 Dendritic superstructures.................................................................................. 55
1H-NMR experiments................................................................................................... 56
UV/Vis experiments..................................................................................................... 66
Controlling the equilibrium.......................................................................................... 71
3.2.3 Supramolecular Polymers ................................................................................ 72
Bridging biscyanurates................................................................................................. 72
UV/Vis experiments..................................................................................................... 74
Viscosity experiments .................................................................................................. 75 Light Scattering ............................................................................................................ 77
1
H-NMR experiments................................................................................................... 83
3.3 Isocyanides ............................................................................................................... 86
3.3.1 Synthesis of Hamilton isonitrile ligand (70) .................................................... 86
3.3.2 Copper isocyanides .......................................................................................... 89
Syntheses and properties .............................................................................................. 89
Complexation behavior of Cu complex (75)................................................................ 91
3.3.3 Platinum and palladium isocyanides ................................................................ 93
Syntheses and properties .............................................................................................. 93
Complexation behavior of Pt/Pd complexes ................................................................ 97
3.3.4 Ruthenium phthalocyanine with isocyanide ligands...................................... 101
Synthesis and properties............................................................................................. 102
Complexation behavior of PcRu(70) (81)................................................................. 109 2
Supramolecular ruthenium phthalocyanine polymers................................................ 113
3.4 Pyridine derivatives for the coordination of PcRu ................................................. 123
4 Summary ........................................................................................................................ 130
5 Zusammenfassung.......................................................................................................... 134
6 Experimental Section ..................................................................................................... 138
6.1 General Remarks .................................................................................................... 138
6.2 Experimental Details .............................................................................................. 139
6.3 Experimental Procedures........................................................................................ 140
7 Literature ........................................................................................................................ 175
8 Appendix ........................................................................................................................ 184
1 Introduction

1 Introduction
1.1 What is Self-Organization?
[1]
A general definition of this process reads as follows: “Self-organization is the spontaneous
often seemingly purposeful formation of spatial, temporal, spatio-temporal structures or
functions in systems composed of few or many components.”
It therefore refers to a broad range of formation processes, where structures or patterns
globally appear in a system without being imposed by a central authority or external planning.
Countless examples can be named both in the inanimate and animate world, such as the
growth of a snow flake, the formation and structure of galaxies, the behavior of bacteria
swarm or fish joining together in schools.



[2] [3]
Figure 1: Self-Organization in wildlife: fish schools and formation of flocks by birds .

The coherent pattern formation occurs in a distributed and parallel way without intervention
[4]
of a central authority or an external directing influence. Thus, the organization is achieved
by local interactions of the elements.


1

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.