Semigroup methods in finance [Elektronische Ressource] / vorgelegt von Michael Einemann

Publié par

undUnivBremenevrsitF?dertMichaelUlmnat.Ff?rakult?thaftswissenscf?rersit?tMathematikvundnnWirtscrer.haftswissenscderhaftenakult?tSemigroupMathematikMethoWirtscdshafteninUnivFinanceUlmDissertationorgelegtzuronErlangungEinemadesausDoktorgrades2008Dr.agAmhtierendAreneUlricr20.10.2008Dek2.anProf.:RiederProf.PromotionDr.olfgangFdtrankGutacStehlingter:1.Dr.GutachhTter:derProf.:Dr.WeIsehailEinaratosemigreverywheroupIwhenemIsesethemee.oneHilleand’C0CC0pL 1p<1innctionalanalysis........r.Hilb.....con.v...e.................44.48.in.e...ariance.lattices.......A.3.1.....erators1.1.1.1.Geometry.ofTheBanac.h3.3.2spaces..ximinal,...sets...........for...h.63.......in.........ssipativit.subsets......1.1.1.2.ConFv.ex.Analysis....v.under.............op.....ariance.ex.....jectable.....In.space.....traction...3.4.2.2.ersiv...In.ex..6601.1.3tervThe.dualit.yremindermapping....in.......Order.In...............27.of.a.arian.semigroups.tro..................8291.1.4eThe.sub.dieren.tial..........3.3.of.ex.1.......36.function...............-dissipativ.and.conditions.......In.p.n.und9i1.2.Semigroups,.their.gNormallyenproera.tors.and.asso.ciated49formsariance.Banac...........3.4.2.1.and.erators.....ositi.and.op....11591.2.1arianceAbstractconCaucinhsy-Problems....In.order.in.........A.v.........3.4.4.2.als.............64.terv.tro11ten1.2.2.Strongly.con.tin.uous.semigroups....................3.generalization.di.y.nd.v.t.of.29.In.duction......12.1.2.3.Hille-Y.osida.Generation.Theorems.............
Publié le : mardi 1 janvier 2008
Lecture(s) : 12
Tags :
Source : VTS.UNI-ULM.DE/DOCS/2009/6666/VTS_6666_9146.PDF
Nombre de pages : 150
Voir plus Voir moins

undUnivBremenevrsitF?dertMichaelUlmnat.Ff?rakult?thaftswissenscf?rersit?tMathematikvundnnWirtscrer.haftswissenscderhaftenakult?tSemigroupMathematikMethoWirtscdshafteninUnivFinanceUlmDissertationorgelegtzuronErlangungEinemadesausDoktorgrades2008Dr.agAmhtierendAreneUlricr20.10.2008Dek2.anProf.:RiederProf.PromotionDr.olfgangFdtrankGutacStehlingter:1.Dr.GutachhTter:derProf.:Dr.WeIsehailEinaratosemigreverywheroupIwhenemIsesethemee.oneHilleand’
C0
C
C0
pL 1p<1
innctionalanalysis........r.Hilb.....con.v...e.................44.48.in.e...ariance.lattices.......A.3.1.....erators1.1.1.1.Geometry.ofTheBanac.h3.3.2spaces..ximinal,...sets...........for...h.63.......in.........ssipativit.subsets......1.1.1.2.ConFv.ex.Analysis....v.under.............op.....ariance.ex.....jectable.....In.space.....traction...3.4.2.2.ersiv...In.ex..6601.1.3tervThe.dualit.yremindermapping....in.......Order.In...............27.of.a.arian.semigroups.tro..................8291.1.4eThe.sub.dieren.tial..........3.3.of.ex.1.......36.function...............-dissipativ.and.conditions.......In.p.n.und9i1.2.Semigroups,.their.gNormallyenproera.tors.and.asso.ciated49formsariance.Banac...........3.4.2.1.and.erators.....ositi.and.op....11591.2.1arianceAbstractconCaucinhsy-Problems....In.order.in.........A.v.........3.4.4.2.als.............64.terv.tro11ten1.2.2.Strongly.con.tin.uous.semigroups....................3.generalization.di.y.nd.v.t.of.29.In.duction......12.1.2.3.Hille-Y.osida.Generation.Theorems......................3.2.-dissipativ.op................15.1.2.4.Holomorphic.semigroups..........32.In.ariance.closed,.v.sets.1.1.-semigroups...............3.3.1.distance............17.1.2.5.Semigroups.asso.ciated.to.sesquilinear.forms..36.Preliminaries.e.erators.in.ariance...............3.4.v.of18ro2coMotivvation:setsSemigroupsearising1in-semigroupsMathemati.cal.Finance.21.2.1.In.tro3.4.1ductionpro.and.ximinal...................3.4.2.v.results.a.h.....................56.Con.semigroups.dissipativ.op.........58.P.v21semigroups2.2dispOptionepriceseratorsas.solutions.of.Cauc.h.y3.4.3problemsv.results.closed,.v.sets.a.ert.pace.........3.4.4.v.of.in.als.Banac.lattices..21.2.3.Semigroup.Pricing.Me.th.o3.4.4.1dsshort.on.ector.................63.Order.terv.............................3.4.4.3uin.als.duction.,.ts.Con...24.2.4.Conclusions.and.op.en.tasks..69.C0
C0
C0
X0
C( )
C0
pC L (0;1)0
C C ([0;1))0 0
m..........74.4.An.extension.of116Ouhabaz'.in.v134arianceApplicationscriterion.for.inbOrderholes-semigroups.77h4.1.In.troinductionon.7.5...........6.3.1...deGiorgi-Nash...on.7...............7.2.2.........of..........................77.4.2.Common.xedcalp.oin.ts107ofoten3.4.4.4.ts.-semigroupsforand7.1existence.results..........a............78.4.3.An.extension.of.Ouhabaz'vin.v.ariance.criterion7.3...via...............Bibliograph.in.............102..83.4.4.In.v.ariance.of.order.in.te.rv.alsclassandopBeu.rling-Den.y.criteria6.3.2.y...........P.a.and.........Generation87Blac5eratorSemigroupstroof.injectiv.e.op.erators.89.5.1.In.tro.duction115.-semigroup...b.ariational.........Notation...................results...............7.2.3.of.als...............in...7.489ean5.2tecA.sucien.t.condition.for.injectiv.e.semigroups................127.134....................89.6.Regular.form.p6.3erturbations.and.the.general.ized.Kato.class.93.6.1.In.tro.duction................105.The...-Kato.for.ultiplication.erators.............105.Lo.regularit.of.forms...................6.3.3.erturbation.y.P93tial6.1.1SemigroupsNotation.and.Setting.fo.r.this.c.hapter112.Application:.results.the.k-Sc.Op.115.In.duction........................94.6.2.Abstract.results........7.2...on.......y.v.approac.................7.2.1..............................95.6.2.1.Lo.cal116formsGeneration...............................117.In.ariance.order.terv.......................an.form120...-semigroup.terv.als...and.explicit.ula....95.6.2.2.Kato.p.erturbations..121.Prices.Europ.options.semigroup.hniques...............124.Notes..............................98.6.2.3.In.v.ariance.of125tenyConIndexherDanksagungheZusammenfassungErkl?rungdeutsc.Sprac.135.139.^o
A
A T
X
ythisolutionthesisopisoftoophighligh,tintheBlacroleuousofissemigroupthistheorydelsinremathemaholestiiccertainalpartialnanceeratorandoftoitproconvideholesaproclassanoftousefulthemethogds.anApartefromythisstillspmoecial)task,deepsevineralanewconofresultsusconcerningiinwhveratorsarianwilltessubsetsbasedofnostronglyinconltingroupuousasemigroupsthisandwregularApwerturbationsBlacofshosesquilinearthformsativ(relatetionsdSolvingtoedtheulaclassicaldaKatoanclass)naretingivrationalized.en.wInofnancialfact,mathematicsaoneinisproblem.inwterestedsuitableinstoydathey'ssemigroup:pricessofinnancialthederivdierenativnance)esorwritten,offorstepinstance,ationonequationahasticstoaskctkotherwhicyhnanciarethereexercisedgagttime.amfuturevdate.MoreNoselywaretwingwjoronquestionsthearise:orkWhatandis1973.aedfairargumenptricedandcanhoaswpartialcantialwequationetheydetermineeit?holesSevheraluseattempts,hajorvofe(consbveencomadestobthiswithquestion,tialbutarethethefoconlIlothewingoideatialseemsonethethismosthnaturalthone:ductionWhenevaeruouswhethencanlreplicateCauctheandcashpriceoativwfromofsemigrouptheesnancialprice!derivofativtoethwithk-Sca(orself-nancingotradiningastrategyuousinThtheemarkgoalset,GoingthenonethetheinitialBlacvdierenalueaofstothisThstrateymighgivthereesunction-usrthethefairhand,pricemanofmotheofderivaativmathematicse.isSounderlyinfarsemi-thedescribintheoryevbinehindOurtheipricingisproincedure,estigatebutsemigroup.whatparecithe,tecehniquesinonefolloshallsituation:use?maDuesteptotheanceuncertainastpioneerinywofoffutukreScpricesinitTheyseemswobwithviousreplicationthattprobabilitaypricestheorynancialhaserivtoesbbeobtainedthesoludailyofwdorkereninequations.mathematicalthisnance.bAshand,aderivmatterthoffamousfactk-Sctheformfastwhicgroiswinginintoterestyofalthoughthemalatterdisadvintagesrecenthetdelytaearsthasolatilitinuenced,thenresearcuouhpathsincannotaewideButareathoseodierenfequationselds.eFalreadyorininstance,theorythestronglymartingaletinthsemigroups.eonryrewritinghasequationsseentermsafbdierenoopostTheincanitsterpretpasopularitCaucyyandIfresearceheratorprogress,nosincegeneratesHstronglyatinaimsemigrouponrriasonBanacandspacePlisk,athedemonstratedoinution1981the(cf.h[HP81])problemthatthoptionthepricesofcanderivbeeobtainedwrittentheasthethegconditionalvexpuectationthewithTherefore,respisectgreattoterestadeterminemartingaleemeasure,eri.e.Blacanholesequiveratoralenotherttialprobailitpyarisingmeamathematicalsgeneratesurestronglyundertinwhicsemigrouphnot.thisebdiscounonetedourpriceinprothesis.cessaisfurther,aobservmartingale.thatAnotherderivimpofortank-Sctpartialasptialectwissstooncchasticcalculus.calculususandonethetfamouswhetherItistrofInalanalyticreplacemen-infotegthisral.cedure.On[ 1 ; id]
A x X x0 0
A T
T T (t)x t 00
X
x2X
C x

C
T A C
aolvingertlikthee,atevtheolutionsemfamilywandterestedthatetherebexistsofaegeneratorforofathis3evderivolutiongeneratesfamily..pThensatisfyinghethecouldsetderivtoeunderaarian(non-autonomous)injectivCaucforhtopicyfromproblemstronglyfromtheorythis,mwhicaharenally,lsoeastepdsetstoariantheaBlaccomplicatedk-Sceholeswequationfuorset.othertroknovwnthatequationsisinthesis:nance.stronglyHop,w3.everators,er,holesheofwoasortancenotnance.ableariantosemigroupsorelevvquestion.ercomehthesomcrucialueathelertiesptheotiniton,tgivinthishiscreasoningclosed,andhdidesnoteprospacevidesubanevyspaceconditionmethounderWithwhictheoremhhhisofassumptionsclosed,areisfullled.toAsforaArendt,matterofofefact,ynoinwifadatheoryysofwinesubsetsaretinstillgmissingsemigroupsaop(moreerturbationortialless)generationpureBlacfunctionalanalyticerator.pricingstatedproaccedureofininthedliterature,endenalthoughuseseveeralintecsubsetshniquestinfromcfunctional4.analysisof(eout.engstract.problexoiopstenceinitialpropricesofshofisequivhalenthattferedmartingaleIfmeasuresstronglyorsemigroupthecorrespstovcofhastithecutioninbtegral(citself;,see,.for3instance,onthevwaorkdidofprototFinreddysubsets.DelbthataeenBr?zisandtreatedWtoalterHoScourhacBanachermaseemsynew.er)willhafollovelpehtheireprominenfortrstplacediereninenance.toThevstatedinmethonon-emptdsenablesinthethis-dissipativitthesiswmighbtandhelpdistancetoclosed,gosets.athisstepGarmanfurthershoinsettoarianthesemigrouppricinggeneratordirection.eAfterapplicablethistopicsenthetry1.invtottheofsubconjectuouswierouw2.anoftetoerators,givperesultsadierenmopore4.detailedresultsacctheouk-ScnoptClearlyofthetheresultscoenhcrearetetheirgoalswnandterestresultsnofimptheindepthesis.tThetheirstartinginpWoinstarttithisvcthapterof2.conWuouseindemonstratehapterstheandideaTheofanceBlacthiskisandofScGivhanolesbandCaucdescribyeethefpricerofeaeratorEuropandeanvoptionofasinaBanacsolutionspaceofoneainpartialwhicdierenproptialofequation.assumedIntransthitossolution.connection,simplywaeconobservuouseHeathiscondshangeinofariandriftsubsetsin[Gar85]).thesincepriceuniqueprolcess,iswhicenhycanfbdirectionetoininterpareteIndhapteraswacpsidererturbationconofextheinassoBanacciatedspacedierenastialossibleopyperator.forInvaddition,twWeremarktakineHilbartkindcaseofhrevsersethepjectoinatdegree.ofwviewer,andmorestudygeneralthehstructurecaseoftopriceeopOureratorsdinbanthearbitrage-freewing:markhet.ofItHahn-Banacturnsseparationoutwthatshothesethatformeacanwhoevtheolutionsubfamilytialofthlinear,distancepnctionositivthee,coninjectivexelyopprobaberators.aMoreoyvThiser,usthegeneralizeordernotioninastervyalhalf-normsevinereducedwyesChernoisKatointhevfunctionarianarbitrarytconativex-dissipativWFcallqpropayi-con-dissipativiteandwwevthehaisevutalencethefMarkstatemenitsIniirdtoundere.thisorfamilyu.sWtractivesemigroupstakeeenthesevstatemeneqtsivasoathesemotivts.ationoiernspiringmakthethisfollomorewingwfourmainT T (t) t 0
T
X
X
(a;D(a))
0 0’2D(a) R( ; A)’2X A :D(a)!D(a)
0a D(a) D(a)
A

X0
X0
X X0 0
X = C( )
N 1
R V 2L
loc
1L ( ) C ( )0
ofestspiritapprotheximationedpandoinmeasure.ts.KatoThithesdmakwillestothecaltheorystracthighlyanappltheicaclassbthele.inFtiorloinstance,whicwsituation,einnitrecoTvneedserWtheufamousacfharacterisationstermsofthpareositivtheeshoortoconthetractivopevsemigroupprops.theAedditionallyof,er,wwhiceex.includeandanloextensivweordertreatmenistTheforwhicthekninev,ariancetheofesorderforminsemigrouptervproblemalswindeneBanacohex,lattices.aHere,ofw.eealsoopencoun.tercalKato-toyppeThinequalitiesdenesimilarKatotovtheKatocandharacterisationtheofApceositivaeandsemigroupsclass.prothevidedebassoyeArendtfunctions(cp.b[Nnotag,86,forTheoremonC-IaI.3.8]).oMeanewhiximationletochlethapterdev4duceiselemendedicatedonlytoroinWvyarianjectabletpsubsetsandoftosemigroupsximinalonerturbationsHilbassoerthspaceserturbasso-stillciatedAstoconnecteddenselyKatodened,takconfreedomtinabstractuous,oureinlximinalliptic,thesesquivlinearfunctionformhsdieren.tsHere,thataWbconeautifulisresultassodueformtowOuhabazduceisersionsknoawnccjectableharacterisingandtheparticular,inisvlarianceloofofaWclosed,pcsevonofvandexKatosetparticularunendencederclassconIntractivards,etrosemigroupspwithareconditionspropriateonotenthebformclassicalrelatedwtoenthecorthcanopgonalareprotojection,onthetooftheanishingclosed,.contovinexlset.ertWiseKatoreplaceprotheobtainassumptionitofpresenconintractivitLyyfunctions.bproyTheorem,thecertainexistencewhicofalenaacommonofxedoundaryppartointotinofforms,themansemigroupofinfortheifinwnvtheariandeGiorgi-Nashtprosubsetforandformshobwnormallythatexiststhetialtheoremwishstillassovpalid.onThanksleatospaceaoresulttheofciatedBrosucwderthatthispdoedes,isininfact,.gthisenisetoraliclassicalseclasstheetheoremeofeOutohabaz.theInKatoparticular,forthefsituationsrmwhwritteneresettheprosetasconsettainsalltheconorigintoordistancethsucethatgeneratortialhassubcompactofresolvelemenenHere,twfalleinx.tovourandneweframewtheork.eratorWciatedetheclosestheNextsectionebtroylorecovvoferingspthecesfamouslBeurling-Denareysetscriteria.roInnormallycthehaptererator5.wiseessentuarntooaucalrersionattenthetionclass.toesemigroupsalsoofroinjectiveeeralopertieserathetors.classUsingtheacalvclassariationinofaddresstheindepPhragmen-Lindel?fofprincipleKatowfromeparametergiv.efterwawconditionininduteKatormserturbations,ofhthetheresolvpengeneralisationtpoftialsthemeasuresgeneratorelongingoftheaKatostronglyHoconevtinevuousinsemigroupclassijectableal,thereunderbwhicKatoherturbationseachhnotopciatederatoraproFinallynormallywardsconsiderafterwspace,vduceregulartrovinat,yisAsinjectivelonginge.conIisngeneralparticular,aevoerypropholomorphicysemigroupthereisnoinjectivcale.classByximinalgiving.aocounsemigroupsterexampleisw,eeshotw,theoremhothewofevapuner,vthatInthistoconditionvdotheesonenotacapproharacteriseresult,semigroupshofequivitnjectivsomeebsemsortiDiricgbroupcondition.s.nalChapteris6otedconcenapplications.trateseontrothedeGiorgi-Nashthirdforgoal,hregularyptserturbationstheofclassfifinandarianareInoclosinfcm7famoesproTheorem.generationeforvBlacthatholesanerator.deGiorgi-NashwanduseywoundeddierenprotecisBytherevaappotenacsetwthatrealizeshoconsucregularitthatysemigroupspaceciatedothe,erturbwformesetsaprosvktheforandbpdierenvtialt.optheerators.gAgain,hapterwwenallyfovidecusresultsonthesesquilineark-ScformsopandHere,theireassotciatedosemigroups.tIfhniques.theasemigroupariationaliiirotinhoesstronglysomeabstractubuelongsto

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.