Soil organic matter dynamics in a temperate forest influenced by extreme weather events [Elektronische Ressource] / vorgelegt von Andrea Schmitt

De
Publié par

Soil organic matter dynamics in a temperate forest influenced by extreme weather events Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) an der Fakultät Biologie/Chemie/Geowissenschaften der Universität Bayreuth vorgelegt von Andrea Schmitt, Diplom-Geoökologin geb. am 15.11.1969 in Bad Neustadt Erstgutachter: Prof. Dr. Bruno Glaser Bayreuth, Juni 2011 Die vorliegende Arbeit wurde in der Zeit von April 2005 bis November 2010 am Lehrstuhl Bodenphysik der Universität Bayreuth unter der Betreuung von Herrn Prof. Dr. Bruno Glaser angefertigt. Vollständiger Abdruck der von der Fakultät Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) Amtierender Dekan: Prof. Dr. Stephan Clemens Tag der Einreichung des Dissertation: 17. November 2010 Tag des wissenschaftlichen Kolloquiums: 22. März 2011 Prüfungsausschuß: Prof. Dr. Bruno Glaser (Erstgutachter) Prof. Dr. Yakov Kuzyakov (Zweitgutachter) Prof. Dr. Bernd Huwe (Vorsitzender) Prof. Dr. Gerhard Gebauer Dr.
Publié le : samedi 1 janvier 2011
Lecture(s) : 39
Source : D-NB.INFO/1012843610/34
Nombre de pages : 164
Voir plus Voir moins



Soil organic matter dynamics in a temperate forest
influenced by extreme weather events


Dissertation
zur Erlangung des Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)
an der
Fakultät Biologie/Chemie/Geowissenschaften
der Universität Bayreuth

vorgelegt von

Andrea Schmitt, Diplom-Geoökologin
geb. am 15.11.1969 in Bad Neustadt

Erstgutachter: Prof. Dr. Bruno Glaser
Bayreuth, Juni 2011




Die vorliegende Arbeit wurde in der Zeit von April 2005 bis November 2010 am Lehrstuhl
Bodenphysik der Universität Bayreuth unter der Betreuung von Herrn Prof. Dr. Bruno Glaser
angefertigt.


Vollständiger Abdruck der von der Fakultät Biologie, Chemie und Geowissenschaften der
Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)



Amtierender Dekan: Prof. Dr. Stephan Clemens
Tag der Einreichung des Dissertation: 17. November 2010
Tag des wissenschaftlichen Kolloquiums: 22. März 2011



Prüfungsausschuß:
Prof. Dr. Bruno Glaser (Erstgutachter)
Prof. Dr. Yakov Kuzyakov (Zweitgutachter)
Prof. Dr. Bernd Huwe (Vorsitzender)
Prof. Dr. Gerhard Gebauer
Dr. Werner Borken



dedicated to
my family and all friends in need


I
Contents
Contents ………………………………………………………………………………...……..I
List of Tables ………………………………………………………………………………..VI
List of Figures ……………………………………………………………………………...VIII
List of Abbreviations ………………………………………………………………………XIII
Summary ...….……………………………………..…………………………………...…..XV
Zusammenfassung ……………………………………………………………………...XVIII

I Extended Summary
1 Introduction ………………………...…………………………………………….……..….1
1.1 Climate change …………………………………………………………………….1
1.2 Lignin phenols ..…………….………………………………………………….......1
1.3 Plant and microbial sugars ……………………………………………………….. 2
1.4 Phospho lipid fatty acids (PLFA) ...…...………….……………………………….3
1.5 Objectives ………………...……………………………………………………….3
2 Experimental design ……………………...…………..……………………….….…….…5
2.1 Study area (Study 1 - 4) …………………………………………………….…….5
2.2 Laboratory experiment: freeze-thawing cycle (Study 1) ………………………… 5
2.3 Laboratory experiment: drying-rewetting cycle (Study 2) …….………………….6
2.4 Field experiment: snow removal (Study 3) …....…………….……………………7
2.5 Field experiment: throughfall exclusion (Study 4) ……………….……………….8
3 Methods………………………………………..………………………….…………………8
3.1 Sampling …………………………………………………………………………..8
3.2 Lignin analysis …………………………………….………………………………9
3.3 Sugar analysis ……………………………………………………………………..9
3.4 Phospho lipid fatty acids (PLFA) analysis .……………………………………….9
II
3.5 Statistical analysis ………………………………………………………………..10
4 Results and Discussion…………..………………..………...……………………………10
4.1 Influence of frost (Studies 1 and 3) ………………….…………………………. 10
4.1.1 Lignin phenols ………..………………………………………………..10
4.1.2 Plant and microbial sugars ………………………………….………….11
4.1.3 Phospho lipid fatty acids (PLFA) …...………………………………....13
4.2 Influence of drying (Studies 2 and 4) ……………………………………………15
4.2.1 Lignin phenols. .……….……………………………………………….15
4.2.2 Plant and microbial sugars ……………………………………………..15
4.2.3 Phospho lipid fatty acids (PLFA) ………………...……………………17
5 Conclusions ………..……………………….……….…………………….…….…..........19
Acknowledgements ………………………….…………………………..…………………..19
Contributions to the included manuscripts ………..………………………….…..............20
References ………………………………...………………………………………………....21

II Cumulative Study
Study 1: Repeated freeze-thaw cycles changed organic matter quality in a
temperate forest soil ………………....………………27
Abstract …………………..…………………………………………………………….……28
1 Introduction ...…………………………………………………………………….……..29
2 Materials and Methods ……...……………………………………………………..…...32
2.1 Laboratory experiment …………………………….………………………………32
2.2 Sampling …………………………………………….……………………………..33
2.3 Lignin analysis ……………………………………………………………………..34
2.4 Sugar analysis ……………………………………………………………………...35
2.5 Phospho lipid fatty acids (PLFA) analysis ..………….……………………………..36
III
2.6 Statistical analysis ………………………………………………………….………38
3 Results and Discussion ………………………………...………………………….…….39
3.1 Carbon balance ………….…..………………….…………………………………..39
3.2 Lignin phenols …………..………………………………………………………….40
3.3 Plant and microbial sugars ……..…..………………….……………………………42
3.4 Phospho lipid fatty acids (PLFA) …….....…….……………………………………46
4 Conclusions ……………………………………………………………………….……..50
Acknowledgements ………………………………………………………………………….50
References …………………………………………………………………………...………50

Study 2: Organic matter quality of a forest soil subjected to repeated drying
and different re-wetting intensities……….………………55
Abstract ……...……………………………………………………………………………...56
1 Introduction …………………….……..………………………………………….……..57
2 Materials and Methods …………….……..………………………………………..…...60
2.1 Experimental system ……………………….………………………………………60
2.2 Sampling ………………………………….……….……………………………….62
2.3 Analysis of lignin phenols ……………….…………………………………………62
2.4 Analysis of plant and microbial sugars …………………………………………….63
2.5 Analysis of phospho lipid fatty acids (PLFA) .…….………………………………64
2.6 Statistics ……………………………………………………………………………65
3 Results and Discussion ……………………………...…………………………………..66
3.1 Effect of drying and re-wetting on DOM quality ………………………………….66
3.2 Effect of drying and re-wetting on soil organic carbon (SOC) quality ……………68
3.2.1 Lignin phenols …………………………………….………………………….69
3.2.2 Plant and microbial sugars ……………………………………………………70
IV
3.2.3 Phospho lipid fatty acids (PLFA) …….……………………………………..73
3.3 Effect of drying and re-wetting on structure of soil microbial community …….......75
4 Conclusions ……………………………………………………………………….……..76
Acknowledgements ………………………………………………………………………….77
References …………………………………………………..……………………………….77

Study 3: Organic matter dynamics in a temperate forest as influenced
by soil frost……………..…………………….. 84
Abstract ……………………….…………………………………………………………….85
1 Introduction ……………..……….……………………………………………….……..86
2 Materials and Methods ……..…….………………………………………………..…...89
2.1 Experimental site ……….…….……..………………………………………………89
2.2 Experimental design ….…….….……………………………………………………90
2.3 Sampling …………………………….………………………………………………90
2.4 Lignin analysis ……….……………….……………………………………………..91
2.5 Sugar analysis …………………………….…………………………………………92
2.6 Phospho lipid fatty acids (PLFA) analysis ....………...……………………………..93
2.7 Statistical analysis ……………...………………..………………………………….94
3 Results and Discussion ………………………………...………………………………..94
3.1 Soil temperature ……….………….…………………………………………………94
3.2 Lignin phenols ………………………………………………………………………96
3.3 Plant and microbial sugars ……………...…………………………………………...98
3.4 Phospho lipid fatty acids (PLFA) …….…...……………………………………….100
4 Conclusions ….……….………………………………………………………….……..103
Acknowledgements ……….………………………………………………………………..104
References ………………………………………………………………………………….104
V
Study 4: Organic matter dynamic in a temperate forest soil
following enhanced drying ……………………………107
Abstract ……………………………..……………………………………………………..108
1 Introduction ……………….…………………………………………………….……..109
2 Materials and Methods ……….…………………………………………………..…...112
2.1 Experimental site …….…..………………………………………………………….112
2.2 Experimental design ….……….…..………………………………………………..113
2.3 Sampling …………………….…….……………………………………………….114
2.4 Lignin analysis ………….….………………………………………………………114
2.5 Sugar analysis ……………….……………………………………………………..115
2.6 Phospho lipid fatty acids (PLFA) analysis ……....…………………………………117
2.7 Statistical analysis ……...…………………………………………………………..118
3 Results and Discussion ………..……………………...………………………………..119
3.1 Soil moisture …………………………………….…………………………………119
3.2 Kyrill ……………………………………………………………………………….121
3.3 Lignin phenols ……………………………………………………………………..122
3.4 Plant and microbial sugars …………………………………………………………124
3.5 Phospho lipid fatty acids (PLFA) …………………………………...……………..127
4 Conclusions …………………….……………………………………………….…….. 132
Acknowledgements ………...………………………………………………………………133
References ………………………………………………………………………………….133

Acknowledgements / Dank…………………………….……………………140
Declaration / Erklärung……………………………………….……………141

VI
List of Tables
Table I: Chemical properties of nine soil profiles in the Norway spruce stand at the
Fichtelgebirge (n=9). (CEC = effective-cation-exchange capacity; BS = base eff
saturation)…..5
Table II: Experimental design for the laboratory experiment: freeze-thawing cycle…..6
Table 1-1: Chemical properties of nine soil profiles in the Norway spruce stand at the
Fichtelgebirge (n=9). (CEC = effective-cation-exchange capacity; BS = base eff
saturation)…..32
Table 1-2: Experimental design…..33
Table 1-3: Carbon balance of the column experiments (a) Organic layer alone, (b) organic
layer + mineral horizons after three freeze/thaw cycles. Results were scaled from
weight-based to volume based via soil density for better comparability with field
studies and literature data…..40
-1
Table 1-4: Individual PLFA concentrations [µg g TOC]…..49
Table 2-1: Mean chemical properties of soil profiles (n = 9) in the Norway spruce stand at the
Fichtelgebirge (CEC = effective cation exchange capacity; BS = base eff
saturation)…..60
-2
Table 2-2: Mean cumulative fluxes (± SE) (g m ) of lignin, total sugars and PLFA in the soil
solution from the O columns of the control (4 mm), 8, 20 and 50- mm treatments
with added solution during the third drying and re-wetting cycle. Cumulative DOC
-2
and CO2 fluxes (g C m ) of three drying and re-wetting cycles were measured by
Hentschel et al. (2007) and Muhr et al. (2008), respectively…..66
-2
Table 2-3: Mean stocks (± SE) (g m ) of SOC, lignin, total sugars and PLFA in the O, A and
B horizons (O+M columns) of the control (4 mm), 8, 20 and 50 mm treatments with
added solution after three drying and re-wetting cycles. Cumulative DOC and CO 2
-2
fluxes (g C m ) of three drying and re-wetting cycles were measured by Hentschel
VII
et al. (2007) and Muhr et al. (2008), respectively…..68
Table 2-4: Contributions ± SE of individual PLFAs to sum of PLFAs (%) in the O, A and B
horizons of the control (4 mm), 8, 20 and 50 mm treatments with added solution
after the third drying-rewetting cycle (n = 4)…..74
Table 3-1: Chemical properties of nine soil profiles in the Norway spruce stand at the
Fichtelgebirge (n=9). (CEC = effective-cation-exchange capacity; BS = base eff
saturation)…..90
Table 3-2: Mean concentrations (± SE) of investigated biomarkers in the organic layer and
mineral horizon before (2005) and after the snow removal (SM) experiment (0406),
respectively after the following summer (1106) at the control and the SM plots…..96
Table 4-1: Chemical properties of the Haplic Podzol under Norway spruce at the
Fichtelgebirge throughfall exclusion experiment (n=9)…..112
Table 4-2: Correlation coefficient (R²) between the relative individual PLFA contribution to
the sum of PLFA and gravimetric water content [%] without controls 0607 and
0807…..130









Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.