The use of biomarker and stable isotope analyses in palaeopedology [Elektronische Ressource] : reconstruction of middle and late quaternary environmental and climate history, with examples from Mt. Kilimanjaro, NE Siberia and NE Argentina / vorgelegt von Michael Zech

De
Publié par

Publié le : lundi 1 janvier 2007
Lecture(s) : 28
Source : OPUS.UB.UNI-BAYREUTH.DE/VOLLTEXTE/2007/289/PDF/DISS_ZECH.PDF
Nombre de pages : 191
Voir plus Voir moins


The Use of Biomarker and Stable Isotope Analyses
in Palaeopedology


Reconstruction of Middle and Late Quaternary
Environmental and Climate History,
with Examples from Mt. Kilimanjaro, NE Siberia and
NE Argentina



Dissertation
zur Erlangung des Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)
an der
Fakultät Biologie/Chemie/Geowissenschaften
der Universität Bayreuth


vorgelegt von


Michael Zech
geb. am 13.05.1977 in Rosenheim



Bayreuth, Oktober 2006
Vollständiger Abdruck der von der Fakultät für Chemie, Biologie und Geowissenschaften der
Universität Bayreuth genehmigten Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenschaften (Dr. rer. nat.).


Die Arbeiten zur vorliegenden Dissertation wurden im Zeitraum von Juni 2003 bis Oktober
2006 am Lehrstühl Geomorphologie (unter Leitung von Prof. Dr. L. Zöller) und an der
Abteilungen für Bodenphysik (unter Betreuung von PD Dr. B. Glaser) der Universität
Bayreuth durchgeführt.




Einreichung der Dissertation: 10. Oktober 2006
Tag des wissenschaftlichen Kolloquims: 29. Januar 2007





Erstgutachter: Prof. Dr. L. Zöller
Zweitgutachter: PD B. Glaser


Prüfungsausschuss: Prof. Dr. G. Gebauer (Vorsitz)
Prof. Dr. L. Zöller
PD Dr. B. Glaser Dr. Y. Kuzyakov E. Matzner



Kontakt/communications: michael_zech@gmx.de
Verfügbar als PDF unter/available as PDF at: http://opus.up.uni-bayreuth.de

Dedicated to
my friends in need











































I
Contents

Contents I
List of Tables VI
List of Figures VII
List of Abbreviations XII

Summary………………………………………………………………………………...…XIV
Zusammenfassung………………………………………………………………………..XVII

I. Extended Summary

1. Introduction……………………………………………………………………………….2
1.1 Rationale 2
1.2 Biomarkers in palaeopedology 2
1.3 Stable carbon and nitrogen isotopes in palaeopedology 3
1.4 Objectives 4
2. Study Areas……………………………………...………………………………….….…5
2.1 Mt. Kilimanjaro, Equatorial East Africa (Study 1) 5
2.2 Forelands of the Verkhoyansk Mountains, Northeast Siberia (Studies 2, 3 and 4) 6
2.3 Misiones, subtropical Northeast Argentina (Studies 5 and 6) 6
3. Analytical Methods…………………………………………………………………….…7
3.1 Biomarker analyses 7
3.2 Stable carbon and nitrogen analyses 8
3.3 Compound-specific isotope analysis 8
4. Results and Discussion………………………………………...…………………………9
4.1 Biomarkers 9
4.1.1 n-Alkanes in the three investigated ecosystems (Studies 1, 4 and 5) 9
4.1.2 Amino acid enantiomers in the Tumara Palaeosol Sequence (Study 2) 13
4.2 Stable isotope results 13
134.2.1 Natural abundance of C in the three investigated palaeosol records
(Studies 1, 3 and 5) 13
13 154.2.2 Compound-specific δ C results (Study 6)
154.2.3 Natural abundance of N in the the Tumara Palaeosol Sequence
(Study 3) 17
II
4.3 Reconstruction of the palaeoenvironmental and climate history of the three
ecosystems under study 17
4.3.1 Mt. Kilimanjaro (Study 1) 17
4.3.2 Forelands of the Verkhoyansk Mountains (Studies 2,3 and 4) 18
4.3.3 Misiones, subtropical Northeast Argentina (Studies 5 and 6) 19
5. Conclusions………………………………………………………………………….…...20
6. Contributions to the included manuscripts……………………………………….…...22
References 23


II. Cumulative Study

Study 1: Evidence for Late Pleistocene climate changes from buried soils on the
southern slopes of Mt. Kilimanjaro, Tanzania

Abstract 31
1. Introduction……………………………………………………………………….……..32
2. Materials and Methods……………………………………………………………..…...32
2.1 Study area 32
2.2 Field work and working hypotheses 34
2.3 Sample preparation and laboratory analyses 35
3. Results and Discussion………………………………...………………………………..36
3.1 Elemental analyses 36
3.2 Biomarker and stable carbon isotope analyses 38
3.2.1 Black Carbon (BC) 38
3.2.2 n-Alkanes 38
3.2.3 Stable carbon isotopes 39
3.3 Palaeopedologic reconstruction of the vegetation history and palaeoclimatic
implications 40
4. Conclusions……………………………………………………………………….……..43
Acknowledgements 44
References 44

III
Study 2: Multi-proxy analytical characterization and palaeoclimatic interpretation
of the Tumara Palaeosol Sequence, NE Siberia

Abstract 48
1. Introduction……………………………………………………………………………...49
2. Geological Setting and Stratigraphy of the Tumara Palaeosol Sequence ……...…...51
3. Materials and Methods………………………………………………………….....…...53
4. Results and Discussion……………………………………………………………...…..55
4.1 Grain size distribution 55
4.2 Geochemical characterization 59
4.3 Magnetic susceptibility 64
4.4 Characterization of the soil organic matter 65
5. Towards a Chronology for the Tumara Palaeosol Sequence………………….…...…67
6. Conclusions……………………………………………………………………….….…..72
Acknowledgements 74
References 74


Study 3: A 240,000-year stable carbon and nitrogen isotope record from a loess-like
palaeosol sequence in the Tumara Valley, Northeast Siberia

Abstract 81
1. Introduction……………………………………………………………………………..82
2. Geological Setting, Stratigraphy and Chronology of the Tumara Profile..….....…...83
3. Materials and Methods………………………………………………………………....86
4. Results and Discussion……………………………………………………………...…..87
4.1 Carbon and nitrogen contents 87
134.2 Natural abundance of C 89
154.3 Natural abundance of N 94
5. Conclusions……………………………………………………………………….….….96
Acknowledgements 96
References 97

IV
Study 4: Reconstruction of NE Siberian vegetation history based on cuticular lipid
biomarker and pollen analyses

Abstract 102
1. Introduction………………………………………………………………………….....103
2. Materials and Methods…………………………………………………………….….104
2.1 Geographical setting 104
2.2 The Tumara Palaeosol Sequence 104
2.3 Alkane and pollen analyses 105
3. Results ……………….……………………………………………………………....…105
3.1 n-Alkane patterns 105
3.2 Pollen diagram 108
4. Discussion………………….…...............................................................................……110
4.1 Comparison of alkane and pollen results 110
4.2 Palaeoclimatic interpretation of the alkane and pollen results 111
4.3 Palaeovegetation versus pedogenic/glacial history 112
5. Conclusions………………………………………………………………………….…113
Acknowledgements 114
References 114

Study 5: Late Quaternary environmental changes in Misiones, subtropical NE
Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment
sequence

Abstract 118
1. Introduction…………………………………………………………………………....119
2. Regional Setting and modern Climate……………………………….…………...….120
3. Materials and Methods…………………………………………………………….….121
4. Results and Discussion………………………………………………………...…....…124
4.1 Chronostratigraphy 124
4.2 Characterization of the organic matter 127
4.3 Lacustrine biomarkers 131
4.4 n-Alkane ratio nC /nC as proxy for the palaeovegetation 13131 27

V
5. Synthesis: Late Quaternary palaeoenvironmental and palaeoclimate evolution.....133
6. Conclusions……………………………………………………………………….……138
Acknowledgements 139
References 139


13Study 6: Improved compound-specific δ C analysis of n-alkanes for the application
in palaeoenvironmental studies

Abstract 146
1. Introduction……………………………………………………………………….…...147
2. Materials and Methods……………………………………………………………..…148
2.1 n-Alkane standards 148
2.2 Sediment samples 149
2.3 Sample preparation for n-alkane analysis 149
2.4 Instrumentation 150
2.5 Optimization of the GC-C-IRMS results 152
3. Results and Discussion………………………………………....……………………...152
3.1 Optimized sample preparation 152
3.2 Correction factors for the GC-C-IRMS results 155
3.2.1 Drift-correction with CO 1552
3.2.2 Correction for amount dependence 155
3.2.3 Calibration against certified standards 158
133.2.4 Accuracy and precision of δ C values of individual n-alkanes obtained
159by GC-C-IRMS measurements
133.3 Interpretation of δ C values of individual n-alkanes in the sediment core Arg.
161D4
4. Conclusions…………………………………………………………………………….162
Acknowledgements 163
References 163


Acknowledgements…………………………………………………………………………167
Declaration………………………………………………………………………………….169
VI
List of Tables

Table 1-1: TOC/N ratios of litter and some plant samples collected from along a
transect on the southern slopes of Mt. Kilimanjaro. Ratios around 20 and lower
are typically found in the montane forest zone and cannot explain the soil
TOC/N maxima (>20) obtained for the buried A horizons in profile TS01/2250.
Litter and characteristic plants of the ericaceous zone generally reveal high
TOC/N ratios. 37

Table 1-2: Radiocarbon dates of humic acids and one charcoal sample (HK) of
mainly buried A horizons along a soil catena on the southern slopes of Mt.
Kilimanjaro (Physical Institute of the University of Erlangen-Nürnberg,
Germany). For details of the soil profiles see Fig. 1-5. 41

Table 2-1: Radiocarbon data and infrared stimulated luminescence data obtained for
various sample material from the TPS. Analyses were carried out at the Leibniz
Laboratory, Kiel (KIA), the Physical Department of the University of Erlangen
(Erl.) and the GGA-Institute, Hannover (LUM). All ages are illustrated in
stratigraphic position in Fig. 2-7A. 70

Table 5-1: Radiocarbon dates (KIA: Leibniz Laboratory, University of Kiel,
Germany; Poz: Poznan radiocarbon Laboratory, Poland; Erl: Physical
Department of the University of Erlangen, Germany). Calibration was outlined
with quickcal2005 vers.1.4 (http://www.calpal-online.de). 128

13Table 6-1: Drift- and amount-corrected δ C values (‰) ± standard error for
individual n-alkanes from the sediment core “Arg. D4” after calibration against
n-tetracosane-d and n-eicosane-d . 15950 42

VII
List of Figures

Fig. I: Stratigraphy and geochemical results of profile TS01/2250. Black horizons
reveal higher TOC contents and are therefore referred to as Ab horizons.
Especially the 2 Ab and 4 Ab horizon are characterized by high TOC/N ratios,
13maxima in BC, high nC /nC ratios and more positive δ C values, indicating 31 27
that these horizons developed under ericaceous vegetation. 9

Fig. II: (A) Numeric dating results, (B) TPS stratigraphy and legend, (C) depth
profiles of the palaeoenvironmental and palaeoclimatic proxies as inferred from
the analytical results and (D) basic climatic stratigraphy and tentative MIS
a bcorrelation. HA = alkali soluble substances (humic acids), H = alkali
insoluble substances (humins), dotted line = exponential fit. 11

Fig. III: Left: Schematic stratigraphy and numeric dating results for the sediment
core Arg. D4 and stratigraphic subdivision. Right: Depth-functions for TOC,
13TOC/N, δ C and the biomarker proxies nC /nC , nC +nC +nC and TOC 31 27 17 18 19
nC +nC . 23 25 12

13Fig. IV: Stratigraphy of sediment core Arg. D4 and δ C values of individual
terrestrial plant-derived n-alkanes (circles with error bars) in comparison with
13δ C (solid lines). Capital letters to the right of the profile indicate TOC
stratigraphic units. 16

Fig. 1-1: Distribution of Erica excelsa over the altitudinal vegetation zones on the
southern slopes of Mt. Kilimanjaro: Areas of dominant E. e. are marked in
black. A: colline zone, B: submontane zone, C: montane zone, D: subalpine
zone, E: alpine zone. From Hemp and Beck (2001). 33

Fig. 1-2: Photo of soil profile TS01/2250 (2250 m a.s.l.) in the montane forest zone.
Buried black horizons are intercalated by brown, gray and reddish layers,
indicating changing pedogenetic conditions. 34

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.