ON UNIFORM CANONICAL BASES IN Lp LATTICES AND OTHER METRIC
16 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

ON UNIFORM CANONICAL BASES IN Lp LATTICES AND OTHER METRIC

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
16 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ON UNIFORM CANONICAL BASES IN Lp LATTICES AND OTHER METRIC STRUCTURES ITAÏ BEN YAACOV Abstract. We discuss the notion of uniform canonical bases, both in an abstract manner and specif- ically for the theory of atomless Lp lattices. We also discuss the connection between the definability of the set of uniform canonical bases and the existence of the theory of beautiful pairs (i.e., with the finite cover property), and prove in particular that the set of uniform canonical bases is definable in algebraically closed metric valued fields. Introduction In stability theory, the canonical base of a type is a minimal set of parameters required to define the type, and as such it generalises notions such as the field of definition of a variety in algebraic geometry. Just like the field of definition, the canonical base is usually considered as a set, a point of view which renders it a relatively coarse invariant of the type. We may ask, for example, whether a type is definable over a given set (i.e., whether the set contains the canonical base), or whether the canonical base, as a set, is equal to some other set. However, canonical bases, viewed as sets, cannot by any means classify types over a given model of the theory, and they may very well by equal for two distinct types.

  • let cb

  • sort

  • no ?-definable

  • definable

  • base map

  • apr does

  • indeed exist

  • uniform canonical

  • indeed


Sujets

Informations

Publié par
Nombre de lectures 18

Extrait

Lp
Lp
L E [ jE] E [ jE]p t [s;t]
Lp
additionalVpairsAbstraatomlessct.ypW,eisdiscusswthealntheotion2,of(deneduniformbcoranonic,alThebwithasest,vbyotheninectationsanpromptedabstractnable.mannerforandcspPillaecif-Mathematicsicallysitairefordiscussthettheory,ofeatomlesstheCOnAAandlattices.ofWaccessibleeofalsodicult.discussethepartialconTTICESnectionitber.etuniformwtermseenethevdeexist,nabilitnotyclassicalofconthe,setKeyofC-007)uniformofcanonicalebasestandwhether,theanother,existenceuniformofconsistingthemeaning.theoryyoftobypeautifulThispairscanonical(i.ise.,owithinsightheiniteescoofvyertreatedpropucertwy),onanduniformproinvteMETRICinCANONICALparticularathatobservthethesetdiscussedofypuniformincanonharacteriseiofcSecaltobasesalgebraicallitheorysidenabletheinhalgebraicallycitly)closedthemetricrefervStabilitaluedtinelds.lIntrducedoductionation.InphrstabilitONythetheance.or2012.yset.,turnthefollocoanonicquestionalonebtheoryaseexistofnaturabases,tcanonicalypobeclearispaerminimalvsettofstructureparametersofrequiredastoe-denabledeneinthewithtetersypwhosee,tiallyandthereasesucnohTheitertgeneralisesquitenotionsmerelysucahTheasprobabilithe(i.e.,eldorofvdenitionSeofnotamvofarietisyininwherealgebraiccgeometrybases.A?JustformlikneonaltheUCTURESeldANDofINdenition,OtheTcanonicalextenbasethisiwhicswritingusuallytconsideredsecondasSectionatheset,setabasespdoinetsituationoftheviewtheorywhicpairs.h5rendersearlieriwttheoryaclosedrelativelds,elbyecoarseeinthereforevofarianbasesteofethedenable.tyyptexte.wWreadere[mainyofask,logic,forasexample,itselwhetherina[BU10].tctyp46B42,edsisstabledenablecanonicaloTHEMODMETvberUnivaFgivevisionenFsett(i.e.,e-denablewhetherWthethensettocothenwingtainswthequestions.canonicalrstbase),isorforwhetherconcretheecanonicalorbase,thereasmathematicalyset,aliscanonicalequalnamelytouniformsomebasesotherofset.jectsHoawmathematicalevAer,ositivcanonicalanswbases,mavconieyewinsighedinasthesets,ofcannotspacebtyesanayypmeansset.classifyistcoyptrastestheoparamvforerdenitions,ameaninggivessenetautologicalncanmofdelrofcontheeytheoryfurther,t.andcasetheyHilbmaspacesysveasyeryandwservellasbparticularlyyexample.equalcaseforatomlessttwspacesoprobabilitdistinctalgebras,tspacesyprandomes.ariables),TheinctionneisrmnotionhoforeuniformMostcanonicalthebases,orknamelysp,tofSecticanonical3baseswfromconstruwthicanonicalcforhBENthelatticesttheypofescocdianibexpeITrecoSTRvOTHEReandredLAuniformlyBASES,RMiUNIFsthere).aofairlylargenaturalt,one,isandlasthasationapphearedtheimplicioftpresenlpapyTheinquestion,theinliterature4,inwhethersev(terale-denable)conoftextscanonical(isefact.g.,efromWthecauthor'sthispinoinoftexistenceofaview,ofineautifulaInjointiontwwuseorkresultswithshoBerensteinthatandtheHensonof[BBH],ywheremetricconaluedvtheergenceofofeautifuluniformdocsanonicalndbaseedsandisthatdiscussed).setsDenitionsuniformregardinganonicaluniform(whiccanonicalwbasesdoanddescribaexplifewarerelativFelystabiliteasyinpropconertiesofarelogicgiveentheitonySec-Pil96].tiony1.theIntextparticularconwuouseasobservellethethatogicevferyarestabletrotheoryinadmits2000YSubjeBanacClassiclattice,03C45,eautiful12J25.metricworaluedandAuthorases.ortedtheoryyuniformcbase,d'excellenceuuniformhcanonicalbbasespairs,invsomeelds.imaginarysuppsortsb,ANRsohairethejspaceniorof(ANR-06-CEXallandtyypInstituteser-candebreRnaturally1321iden23rdtiedebruarywith1aM
p(x)2 S (M) ’(x; y)x
(y) M b2M
’(x; b)2p () (b):
’ p
(y) = d ’(x; y):p(x)
’ p
M
M
’ p Cb (p)’
’(x; y) y p Cb(p)
p

p
p ’(x; b) = d ’(x; b):p(x)
eqM
Lp
’(x; y)
d’(y;Z) Z
d’ M p(x)2 S (M)x

d ’(x; y) = d’ y; Cb(p) :p(x)
Cb(p)

d’ y; Cb(p)
T x
d’(y;Z) Z p(x)
’(x;y)2L
eqMT AM Z ’(x; y)
d ’(x; y) = d’(y;A):p(x)
A p A = Cb(p)
p7! Cb(p) x Cb(p)
p(x)
Cb
p Cb(p) p
0’ w d’(y;Z) d’ (y;w )’ ’
p A
0’ b d’(y;A) d’(y;A) =d’ (y;b ) W’ ’
0 0w d’ (y;w ) d’ (y;W ) B’ ’
0b d ’(x; y) = d’(y;A) = d’ (y;B) ’ B’ p(x)
Cb(p) =B
htleteryciatesev,,adelamoheryhevdoforofthateyell-dened,ert,propbtheTheWsete,shallthenhereafterorefer(nontoindenablecanonicalpredicatesbasbformInulaealsoasowforell,-denitionsinceossiblyforvour,presenis,tthepurptheosestheretheanonicdistinctioncanonicalservcomplemenesisnovusefulbaseend.formSincetceacanonicalofparameters-denitionareF,originalaofprioritary,bimaginaryyelementtsof,wtheecanonicaluniquelybasisehis(saaasubsetaofsortyhb:.bF)orinmostforpurpvosesthatofisabstractmapmo),delalltheory.thisisalofulanoyphindrance,delbuentFirstwhenevdealingiswithanaesspbaseecicetheoryariablewithfora,naturalparameterhomeorrespsort,ypitaiseacintheterees,tingin(andNocconsistingommon)sotoandaskhwhether,tcyp,ewritingsexistadmitthiscanonicalisbasesadditionwhic,h,areasubsetstuple,offortheypmowhicdel.vThisdelistheret(unique)ruein,ter-denabilitofforcourse,toin.anparameters,yofstableanonictheorycalwhicesh(andeliminatesthisimaginaries.sInhconetinreallyuoussalogic,mapthisasisuniformtriviallybtruetheforparamHilbthaterthspaces,uniformitcoisTprothevtion,edcforaseprobabilityyhalgebrasain(with[Ben06],aandtupleforwhicharacterisedacdenotedBanacall,helatticesuninbase[BBH11]particular(somap.alldenitionofesthesenaturallytheoriecsIndeed,ha,vye,aintheparticular,lwtoeakiseliminationletoftheimaginariecanonics,theevformenathoughords,notbfullforeliminationandofotherimaginaries).bAalsomewhatter-denablelehasthsofcommonlyeryaskalenedarquestionletisthetheallfollotwing.eCanalenweredenitionsnd,oforaneacleththeformiulasucare.theories:eytablthansmac,Oblogiase,yaforformanduladeterminesclassicalThInwritebasesdenable.anonicalwherecisormpUnifinnite,sucwherethat1.eacistsomeeinnitehteruploeerofmovoariablessmallestofexistswhictuplehtheonlyynitelythe(orofcounsuctably)thatmaneacyinactuallyupappThisearyinwithoutVdenoted,thissucasehalthatcforledeviserydomoesdsoeIf,laddition,COdetermines,tupleanduniquelyeveaceryarietwypwriteenotAAmatter)YandBENyA?theITexists2formeeters,isadenable,ci.e.,althatasefor(in,sorteacfhcanonicalthatorethensbasesesucsarethe(ininllectionformThedenes).itoandtula),deformniaathanuniform)ratheranoniculae,bformmapofanlimitmapmwhicTheassoscarcittoytoferefeoreremoncessometoparametersthis)questionhisumeratesactuallycanonicalhardlyforsurprising,.since,ofrst,wtheobservquestionthataserystatedimakcanonicalesmapnoinsense,aand,baseforSecond,ypyuniformaofcanonicypbasegivLemmariseEverytotheuniformadmitsanonicaldenitionsmap.typforandhuwcletalter-denabilitasee(inveryin.sortIndeed,canonicaifparameterswineupconsiderwisucunandaoftohbofealmerelytheaesetcwhicondinghula.isoronlytknoewn,upwtoeinparameterter-denabiltheitdenition,yfor,hasletisparameters.theecommoncanonicpractice,parameterthencanonicaltheinexpressionv(i.e.uspredicatesodenableandathateextensionbelemenyevmatisequivmeaningless.eW.ewremedytheythiseintupletheoffollosucwingthere,m,anner:wDenitionma1re-write.1.equivLetfor-denitionvbareeasasucstablewtheoryy.sinceAanduniformbutdenitioneoftupletyponsistesnginallthehsortallofThenula-denitiontheaconsistsofofaaonefamilymoreofyformthereulviouslyaeInthatcnamelywhanges,sacthatnecessarytheminorallsome,withinlogicthisuousoftin.conusforandholdssamesiseuniformcond,althemap.answ1.2.erstableiorysuniformpofositivesethusforniformevanonicerybstablemapsthevesort).oryLp

img Cb

Cb x f
img Cb
0
f f Cb =fCb
f d’(y;Z)
1d’ y;f (W ) f
0 0Cb Cb f : Cb(p)7! Cb (p)
f
M a Cb(a= M)
Cb(p) p = tp(a= M)
z =f(x; y) T
Cb Cb f Cb(a= M);b = Cb f(a; b)=M (a; b)2
domf b2M T f A
Cbf A

tp f(a; b)=M

’ f(a; b);c = d bc; Cb(a= M) ;

(x; yz) =’ f(x; y);z
Cb n
Cb(p) i a7! Cb(a= M)i i
M

T T
fT;Fg
[0; 1]
T = IHS
p = tp(v=E) P (v)E
p(x) ’ P (v)E
sort,manner.letPrhold.odoof.thisThetheorymakinparametersassertionuniformlyfollofunctionswswfromhometheinnitefactbthatofifanonicthetheisuniformdenablecaseanduniforminjectivHart,eearlierandIthatforistinyesactohoneedeetoisetasortformitsuladthenarwuniformAllulaeof.factoRPrextendedset.enablehasNoe-debtypalistalsoofdenablesort,bandysortaunitforspacemaulaeonetheadmitsthisimageisoftypathat..F1.6orathemap,moreointovieropart,,givuniformlyengartof.wmapobuntheitinforLemmamacanonicaltinbaseThemapscisandandbasesmapthasey,thetheypgwr1.9aapnhmapofmathebmapabwallieanonicdenablecofniformtheu1.10a,ofspaces,imagenoThetify1.3.unitistaseypthee-denableL(oneeliminationcanonicughal1.3baseohasrtoctive.giveseAssumerisebtogrtheesameedenicasetws.i1.7.onsbasmthebother,onandsorthisinnisletaptthypdinate.e-denablesomecondition),denesoameters)Lemmaontinuous,isrdenable.less1.2Pr1.4orThanonicalus,frominastheLemmaswsamthateuniformlywTheawsyandthatdealcanonicaluniformlybasepfor1.8aoftbaseypbesimpleissameexactlycourse,anthenythingenwhicsensehandisandinpater-denablepricewithwithanotherscanonicalthebaseaskforecomesthatLettayple,Faaucanonicalnifunctionforparticular,mwcanonicalimagebaseinisorexactlydansorts.ythingshallwhicimagehtheistheuniformlybintheter-denablelogic,with(nitelyanotherofuniformogic.canonicalLetbase.inAtheoryconsequenceHilbofrather,thisthereof(andonoftacitlyexistencanacewithofTheuniformlyrcanonicalbasebases)ypialsathatproinor,results.sucquanhwillasntheofollothatwing.theertcerhoiceparameteofsunTheniinjeformwherecanonicalthatbasesfurthermorise-denable).ofenoindeeimpaphortance.theNotationquiring1.5.rWhenquivalent[BU10].isisTheawithmofollodel(thisandLemmainLcase)taetupleuniforincsomealelemenasetarysayextension,thewofe-tuples,writesomeecialitespandanniteasossiblylogicdenoteforotherclassicalcencompassesorhThenwheremap(whicintologicduous

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents