Esc 2001 mathematiques classe prepa hec (s) mathematiques 2001 classe prepa hec (s)

Publié par

ASSEMBLEE DES CHAMBRES FRANCAISES DE COMMERCE ET D’INDUSTRIEEPREUVES ESCCONCOURS D’ADMISSION SUR CLASSES PREPARATOIRESMATHEMATIQUESOPTIONSCIENTIFIQUELa pr´esentation, la lisibilit´e, l’orthographe, la qualit´e de la r´edaction, la clart´e et la pr´ecision des raisonnementsentreront pour une part importante dans l’appr´eciation des copies. Les candidats sont invit´es `a encadrer, dans lamesure du possible, les r´esultats de leurs calculs. Ils ne doivent faire usage d’aucun document;L’usagedetoutecalculatriceoudetoutmat´eriel´electroniqueestinterditpendantcette´epreuve.Seule l’utilisation d’une r`egle gradu´ee est autoris´ee.1Exercice 1On d´esigne pour tout entier naturel non nul n: E =R [X], espace vectoriel des polynˆomes `a coefficients r´eelsn nqui sont soit le polynomˆ e nul , soit de degr´e inf´erieur ou ´egal a` n.0Pour tout polynˆome P de E , on note P le polynˆome d´eriv´e de P.nOn d´efinit sur E l’application f, qui a` tout polynˆome P associe le polynˆome f(P) d´efini par:n2 0f(P) = (X −1)P −(nX +1)P1. Propri´et´es g´en´erales.n k(a) Calculer f(X ), f(1). Calculer f(P) pour P =X , k∈{1,..,n−1} et n> 2.k kQuelles sont les valeurs de k∈{0,..,n} pour lesquelles le degr´e de X est ´egal a` celui de f(X )?(b) Montrer que f est un endomorphisme de E .nn(c) Ecrire la matrice A de f dans la base canonique de E (1,X,..,X )n2. Etude pour des valeurs particuli`eres de n.(a) On suppose dans cette question seulement que n = 1.Trouver les valeurs propres ...
Publié le : jeudi 21 juillet 2011
Lecture(s) : 431
Nombre de pages : 4
Voir plus Voir moins
ASSEMBLEE DES CHAMBRES FRANCAISES DE COMMERCE ET D’INDUSTRIE
EPREUVES ESC CONCOURS D’ADMISSION SUR CLASSES PREPARATOIRES
MATHEMATIQUES
OPTION SCIENTIFIQUE
Lapre´sentation,lalisibilite´,lorthographe,laqualit´edelar´edaction,laclart´eetlapr´ecisiondesraisonnements entrerontpourunepartimportantedanslappre´ciationdescopies.Lescandidatssontinvit´esa`encadrer,dansla mesuredupossible,lesre´sultatsdeleurscalculs.Ilsnedoiventfaireusagedaucundocument; Lusagedetoutecalculatriceoudetoutmat´eriel´electroniqueestinterditpendantcette´epreuve.
Seulelutilisationduner`eglegradu´eeestautorise´e.
1
Exercice 1 Onde´signepourtoutentiernaturelnonnuln:En=Rn[Xlopsoˆnyirotedleiecsrnts`meoeacspsaceelv´eec],e quisontsoitlepolynˆomenul,soitdedegr´einf´erieurou´egala`n. 0 PourtoutpolynoˆmePdeEn, on notePe´edlepolynˆomed´erivP. Ond´enitsurEnl’applicationflypoutto`aui,qeˆnmoPˆomeolynlepeosicsaf(Pd´e)apin:r 20 f(P) = (X1)P(nX+ 1)P 1.Propri´ete´sge´n´erales. n k (a) Calculerf(X), f(1).Calculerf(P) pourP=kX ,∈ {1,..,n1}etn>2. k k Quelles sont les valeurs dek∈ {0,..,n}eedr´egedslleelseuquolrpXsteediuleca`lage´f(X) ? (b) Montrerquefest un endomorphisme deEn. n (c) Ecrirela matriceAdefdans la base canonique deEn(1,X,..,X) 2.Etudepourdesvaleursparticulie`resden. (a) Onsuppose dans cette question seulement quen= 1. Trouver les valeurs propres deA. De´terminerlesvecteurspropresdelendomorphismef. (b) Onsuppose dans cette question seulement quen= 2. Trouver les valeurs propres deA. De´terminerlesvecteurspropresdelendomorphismef. 3.Onsupposed´esormaisquenest un entier naturel non nul quelconque. (a)MontrerquesiunpolynˆomePest vecteur propre de l’endomorphismef, alorsPseegdee´drtn. (b)Onconsid`erelespolynˆomes(Pk)06k6ntels que pour toutk∈ {0,..,n}: k nk Pk(X) = (X1) (X+ 1) Montrer que pour toutk∈ {0,..,n}, f(Pk) = (2kn1)Pk. Ende´duirelesvaleurspropresetvecteurspropresassocie´sdelendomorphismef. L’endomorphismefest-il diagonalisable? Pour quelles valeurs dens).saseirenoes´rpeifctjebistjuon?(li-tse
Exercice 2 On rappelle que siUetVsseietp´tecivnids´eependantlease,´dteadieonesri`ts´deasnretdonxveuiaaresblsuetv, alorsU+Vnedeontu´ensitlbaida`eisnede´teunstarevweints´deseruRpar : +Z w(x) =u(t)v(xt)dt −∞ Lescandidatsdevrontadopterlanotationsuivantepourlesfonctionsder´epartition: FUiondrtit´epandertcoifanoselteU,FVdeontitiarepr´deonitcnofaltseV,aietidnsuiesopetelruidsere´ntes variablesal´eatoiresrencontr´eesdansl´enonce´. 1. SoientXetYtnenlleiioleopxetr`eeepedamardariaeuxvind´blesadtnpeneˆmmeseedλ >0. (a) Quelleest la loi de (Y) ? (b) MontrerqueXYoptemda,itnoncfola´eitnsdeurhperaein´d: λ λ|z| zR, h(z) =e 2
2
(c)End´eduirequelavariable|XY|poexntnellieepedusnutiioleetr`eamarλ. 2. TroispersonnesA,B,Capost`alndensereattniesnˆmmeetuaph´eeronurpoelt´. Il n’y a que deux cabines, que prennentAetB, etCattend. Onsupposequelesdur´eesdecommunicationte´l´ephoniquedechacun,note´es,XA,XB,XCsont des variables al´eatoiresinde´pendantesdemˆemeloiexponentielledeparam`etreλ. (a)V´erierqueCrosdeltnierdeerpolaesstueeleistislemtnenem´ev´ent(|XAXB|< XCe)e.s´ilae´rts (b)Montrerquelavariableal´eatoireD=|XAXB| −XCadmethrdousien.e´tp Ende´duirelaprobabilit´epourqueCsorte le dernier. 3. (a) SoientZetTtiellesdeparam`etnedlsioespxnonedaenesntisquveuiae´lriotnisepe´daselbairavxuedsert respectifsαetβ, avecα >0, β >0 etα6=β. De´terminerlaloideZ+T. (b) SoitTCapralpass´etempstotage´uaeltae´erioabriallevalaCopts.ea`al D´eterminerlaloidelavariableM= min(XA,XBeoldieraleduiend´)etTC.
Exercice 3 Onconsid`erelensembleCesctnoitunseusrdesfsnoitcnoruelava`leel´esrien´esdR+. Soitϕlapplicanoit`iuquotaofettinconffait correspondreϕ(f) =Fd´eap:rnei +Z xt F(x) =e f(t)dt 0 On noteDFndelafon´enitiotcoindedelbmesnelF. 1. Expliciterla fonctionFonedelbmesitine´d,estnaneno´rpnsiceDF:, dans les cas suivants (a) PourtouttR+, f(t) = 1 t (b) PourtouttR+, f(t) =e (c) PourtouttR+, f(t) =t 2. SoitLtnoctesevitisop,esnied´nsioctonlensembledesfssurinueR+:telles que × −mt mR,lime f(t) = 0 + t+n (a) Montrerque sifetgsmentsdeont´el´eLalorsf+gL, et que les fonctionst7→tpournNsont ´el´ementsdeL. × (b)Onconside`refLetxR. + +R xt Montrerlaconvergencedelinte´graleF(x) =e f(t)dt. 0 xt ( On admettra que la fonctiongde´neiusrR+parg(t) =e2f(tbtse´nro.)ee) 3.Etudedelad´erivabilite´deF. (a) Montrerque l’on a: 2 2 u u u uu u[0,+[, e1ue60 etu]− ∞,0], e1u60 2 2 (Onposeradeuxfonctionsetoncalculerajusqua`leurde´rive´eseconde) 2 u u|u| Ende´duirequepourtoutr´eelu: 06e1u6e(*) 2 3
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.