DES EDP AU CALCUL SCIENTIFIQUE PARIS JUILLET

De
Publié par

& $ % DES EDP AU CALCUL SCIENTIFIQUE, PARIS, 2-6 JUILLET 2007 Congrès en l'honneur de Lu Tartar ON THE FIELD-MATTER INTERACTION IN ELECTRODYNAMICS: A WEAK CONVERGENCE APPROACH YANN BRENIER CNRS Université de Ni e-Sophia Antipolis FR 2800, (Visiting Institut für Angewandte Mathematik, Universität Bonn) Email: breniermath.uni e.fr June 29, 2007 1

  • al linear

  • system viewed

  • linear

  • congrès en l'honneur de lu tartar

  • ontinuum physi


Publié le : dimanche 1 juillet 2007
Lecture(s) : 16
Tags :
Source : math.unice.fr
Nombre de pages : 18
Voir plus Voir moins

' $
& %
AnfrAngewYAPPRDESUnivEDP2800,Aersit?tU1CALCULASCIENTIFIQUE,BRENIERPdeARIS,olis2-6InstitutJUILLETMathematik,2007Email:Congr?s29,enGENCEl'honneurOdeCHANNTCNRSartarersit?ONTHEtipFIELD-MAFRTTER(VisitingINTERAf?rCTIONandteINUnivELECTRBonn)ODYNAMICS:JuneA2007WEAKCONVER' $
& %
TTERCETECEEXAMPLESSUMMARALGEBRAICYGNETICVINARIAANDTIONALTWAND2007HAMILOLD:TONIANELECTRSETTINGSSEPFINTERAORSPNON-LINEARINTEGRABILITY,E-MASOLUTIONSGNETISMONETHESPMAXWELLJuneANDTHEBORN-INFELDMANIFMODELSMATHEANDBORN-INFELDOMASYSTEMFIELDVIEWEDARAASANDTHECTRESTRICTIONONEOFAANDIMENSION:ASINGULARITIESUGMENTEDVISCOSITYSYSTEMNUMERICALTOINANANDALGEBRAICOMANIFAOLDDIMENSIONSWEAK29,CLOSURE2OF' $
3
(E(t,x),B(t,x)) x∈R
∂ B+∇×E =0, ∇B =0,
t
Z
d
{L(E(t,x)+ε η(t,x),B(t,x)+ε β(t,x))−L(E(t,x),B(t,x))}dxdt =0,

ε=0
(η,β)
L
6
(E,B)∈R , E (E,B)
2 2
E −B EB
1
2 2
L(E,B)= (E −B ),
2
& %
givstationaryonlyactiondepwherewitherturbationthetsdierentialThets.E-MAHereontial(homogeneousthenormalized),ell'seldsJunemo2007bisTIONALaORgivWenendingrealthatfunctionpdierenfollothroughtotosubortedandsupp,.allsimplestfordel,forentheywingVAARIAvSETTINGexFinNON-LINEARsatisfyGNETISM,andofleadsokthelolineareanddenesMaxwtheequations.mo29,del3and' $
3 3
h(D,B)= sup ED−L(E,B), ∀D∈R , ∀B∈R
3
E∈R

∂ B+∇×(h (D,B))=0, ∇B =0,
t
D

∂ D−∇×(h (D,B))=0, ∇D =0,
t
B
∂ (h(D,B))+∇(D×B)=0,
t
∂ (D×B)+∇(Π(D,B))=0,
t
Π
& %
yTONIANolicFORMULAuumTIONequations,InC.trows2005,thedelspartial29,Legendre.transform:HypWationegetysics,HAMILSerre,erbthenonlinear'HamiltonianMaxwform'(2004).additionale'energy-momenexplicitlytheorem)ether'sDafermos,Noerbyblavidedin(protinwsphlaSpringerationD.Hyptum'olicitTHEofthewithmowhereoftheell'suxARMAtheJune42007b' $
1 1
2 2 2 2
L(E,B)= (E −B ), h(D,B)= (D +B ),
2 2
q q
2 2 2 2 2 2
L(E,B) =− 1−E +B −(EB) , h(D,B) = 1+D +B +(D×B)
BORN−INFELD system
B,D << 1
B =0
p
2
L(E,0) =− 1−E , ∇×E =0.
E 1
−15
10
& %
scalingBORN-INFELD'S.ANDwhereMAXWELL,MODELSoriginalinTheto(cf.Ann.H.ysicaloincar?,ellsimplestJunea2007spisiseedvProeredenasytheappropriatelo(WithwtseldwnlimitasofationthetheoryBIspiritsystem,relativitasspthewtheMaxwlighell'sandequations.RoA.isInbthebinphnon-linearunits.Born'ssuggestedBI,Maxwwdogivtomodel,yThisemeters.)getwinBorn's1934motivbforynon-linearMax,BorntheandofLeopecialoldyInfeld,noiseedobtainedallowithedondssptoofthet.toBornleadsInfeld,andLondon,y144SoBorn,eldAThen,(1934),theelectricInst..PThe1937)Maxw29,ell5system' $
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
q
D×B
2 2 2
h = 1+D +B +(D×B) , v = .
h
∂ h+∇(hv) =0,
t
h
D,B (0,0)
& %
wn29,'en6systemeabbeensystemproBorn-InfeldvfunctionenonlytoofexistwhereforvidessmallylohvinitialtheSYSTEMbayoChaeisandThisHuh,reads:J.proMath.anPhtropys.function'2003.whicTheisadditionalexationoflaunknowTheBoillat,BORN-INFELDBoillat,inneighorhoCIMEdLax,THE1640.hyperb.olicG.andinlinearlyDafermos,degenerate.Liu,Global1994-SpringersmonotesothJunesolutions2007hav' $
10×10
augmented adding 4
B⊗B+D⊗D 1
∂ (hv)+∇(hv⊗v− )=∇( ), ∂ h+∇(hv) =0
t t
h h
6
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
DISREGARDING
q
D×B
2 2 2
h = 1+D +B +(D×B) , v = ,
h
6 BI MANIFOLD.
& %
BI7othbtsTOthetum'originalwhile(ABI)ISBISYSTEMevationolutiontheBORN-INFELDBIequationsorofTHEUGMENTEDEQUIVmadeAisTO(ABI)dimensionalsystemBorn-Infeld'energy-momentedyAsystemaugmenoriginalTheFSYSTEMsmoTHEsolutions,29,BISYSTEMws:JUSTMANIFALENTTHEh.UGMENTEDh.RESTRICTED2004THEthelaOLD.toYB,theRat.whicAnalysishJunedene2007the' $
10×10
D
∂ B+∇×(B×v+ ) =0, ∇B =0,
t
h
B
∂ D+∇×(D×v− ) =0, ∇D =0,
t
h
B⊗B+D⊗D 1
∂ (hv)+∇(hv⊗v− ) =∇( ), ∂ h+∇(hv) =0,
t t
h h
2 2 2
1+D +B +(hv)
η(h,hv,D,B) = ,
h
classical
(t,x)→ (t,x+Ut), (h,v,D,B)→ (h,v−U,D,B),
3
U∈R
& %
OFequationseedMHD(augmen!eBIGalileanyin8vOPERariance:AlikTheoksforandtfunction.systemy29,enjoysSOMEtropPRenTIESexTHEvUGMENTEDSYSTEMaABIastedadmitsananddegenerate,splinearlyBorn-Infeld)olic,erbItloJuneis2007hyp' $
∂ b+(v∇)b = (b∇)v−τ∇×d, ∂ d+(v∇)d = (d∇)v+τ∇×b,
t t
∂ τ +(v∇)τ = τ∇v, ∂ v+(v∇)v = (b∇)b+(d∇)d+τ∇τ,
t t
1 B D
τ = , b = , d = .
h h h
τ τ <0 τ =0
h∼∞
2 2 2 2
τ >0, τ +v +b +d =1, τv =d×b.
& %
NON-CONSER).Born-InfeldItoth.isellusefulSYSTEMforeabrigorousJuneasymptoticVERSIONanalysisareoftheariables,highiseldforregimesandaluesMath.vArealTHE,solutionsALLsmo(includingInYB,ativen-anvong,theationManifoldparticle,denedandy:branedenedfromwBorn-Infeld2007y),ysics,Electromagnetism,ofstringsTHEVatTIVEleastOFwhenABIthewherelimitwhichWYShalloDerivw-wofaterstringMHDmemequationsmotions(withoutthegravitJ.ThisPhsystem2005is29,9' $
10×10 linearly degenerate

L
CONVEXHULL BI−MANIFOLD
natural
∇D =∇B = 0
q
2 2 2
h≥ 1+D +B +(hv) +2|D×B−hv|.
& %
stablethevproblemvis(Thisoptialentakinwhigheronedimensions.)matterThusingus,mtheandhasisysystemonlyBorn-Infeld)solutionstedounded(augmentheABItsThebOLDeMANIFbofintheThisBIhWEAKdimensionTHEANDSerre:CTIONstillINTERAvTTERendingFIELD-MAsmoTHEinwhileuniformlylimitslemma,ofdierenJune2007theytoenbproebtheusteakewenergence:tovt.)eakexwullAfull'div-curl'andasSerre,bBorn-InfeldD.elds,temp.solutions.371,areMath.ariableattainablespacebonydepothofoftheunderoriginalBIbsystem.of(AsaonD.Brenier'shremarksetY.forintotialelectro-magneticContoMath.,theAmer.ABISosystem,2005.29,b10e

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.