Equipe Algèbre Géométrie Topologie

De
Publié par

Bibliographie Equipe Algèbre, Géométrie, Topologie 2010 [1] Aubry, M. Hall basis of twisted Lie algebras. J. Algebraic Combin. 32, 2 (2010), 267–286. [2] Beauville, A. The action of SL2 on abelian varieties. J. Ramanujan Math. Soc. 25, 3 (2010), 253–263. [3] Beauville, A. Finite subgroups of PGL2(K). In Vector Bundles and Complex Geometry (2010), vol. 522 of Contemporary Mathematics, AMS, pp. 23–29. [4] Coppo, M.-A., and Candelpergher, B. The Arakawa-Kaneko zeta function. Ramanujan J. 22, 2 (2010), 153–162. [5] de Saint-Gervais (auteur collectif), H. P. Uniformisation des sur- faces de Riemann. ENS Éditions, Lyon, 2010. Retour sur un théorème centenaire. [A look back at a 100-year-old theorem], The name of Henri Paul de Saint-Gervais covers a group composed of fifteen mathematicians : Auré- lien Alvarez, Christophe Bavard, François Béguin, Nicolas Bergeron, Maxime Bourrigan, Bertrand Deroin, Sorin Dumitrescu, Charles Frances, Étienne Ghys, Antonin Guilloux, Frank Loray, Patrick Popescu-Pampu, Pierre Py, Bruno Sévennec, and Jean-Claude Sikorav.

  • group action

  • hyperbolic polynomials

  • algebraic geom

  • turán inequalities via very hyperbolic

  • variable real

  • sy- métries des structures géométriques


Publié le : lundi 18 juin 2012
Lecture(s) : 55
Source : math.unice.fr
Nombre de pages : 4
Voir plus Voir moins
Bibliographie
Equipe AlgÈbre, GÉomÉtrie, Topologie 2010
[1]Aubry, M.Hall basis of twisted Lie algebras.J. Algebraic Combin. 32, 2 (2010), 267–286. [2]Beauville, A.The action ofSL2on abelian varieties.J. Ramanujan Math. Soc. 25, 3 (2010), 253–263. [3]Beauville, A.Finite subgroups ofP GL2(K). InVector Bundles and Complex Geometry(2010), vol. 522 ofContemporary Mathematics, AMS, pp. 23–29. [4]Coppo, M.-A., and Candelpergher, B.The Arakawa-Kaneko zeta function.Ramanujan J. 22, 2 (2010), 153–162. [5]de Saint-Gervais (auteur collectif), H. P.Uniformisation des sur-faces de RiemannRetour sur un thorme. ENSÈditions, Lyon, 2010. centenaire. [A look back at a 100-year-old theorem], The name of Henri Paul de Saint-Gervais covers a group composed of fifteen mathematicians : Aur-lien Alvarez, Christophe Bavard, FranÇois Bguin, Nicolas Bergeron, Maxime Bourrigan, Bertrand Deroin, Sorin Dumitrescu, Charles Frances, Ètienne Ghys, Antonin Guilloux, Frank Loray, Patrick Popescu-Pampu, Pierre Py, Bruno Svennec, and Jean-Claude Sikorav. [6]Dimca, A.Characteristic varieties and logarithmic differential1-forms. Compos. Math. 146, 1 (2010), 129–144. [7]Dimca, A., and Szendrői, B.The Milnor fibre of the Pfaffian and the 3 Hilbert scheme of four points onC.Math. Res. Lett. 17, 2 (2010), 243–262. [8]Dumitrescu, S.Connexions affines et projectives sur les surfaces complexes compactes.Math. Z. 264, 2 (2010), 301–316. [9]Dumitrescu, S.Killing fields of holomorphic Cartan geometries.Monatsh. Math. 161, 2 (2010), 145–154. [10]Dumitrescu, S.On the geometry of rigid geometric structures. (Sur les sy-mtries des structures gomtriques rigides.). Proceedings of the Seminar on
1
Spectral Theory and Geometry. 2009–2010. St. Martin d’Hres : Universit de Grenoble I, Institut Fourier. Sminaire de Thorie Spectrale et Gomtrie 28, 29-49 (2010)., 2010. [11]Dumitrescu, S., and Zeghib, A.Gomtries lorentziennes de dimension 3: classification et compltude.Geom. Dedicata 149(2010), 243–273. [12]Kostov, V. P.Additive Deligne-Simpson problem for non-Fuchsian sys-tems.Funkcial. Ekvac. 53, 3 (2010), 395–410. [13]Kostov, V. P.Interlacing properties and the Schur-Szegő composition. Funct. Anal. Other Math. 3, 1 (2010), 65–74. [14]Kostov, V. P.A mapping defined by the Schur-Szegő composition.C. R. Acad. Bulgare Sci. 63, 7 (2010), 943–952. [15]Kostov, V. P., and Dimitrov, D. K.Distances between critical points and midpoints of zeros of hyperbolic polynomials.Bull. Sci. Math. 134, 2 (2010), 196–206. [16]Maingi, D. M.The application of the method of Horace to get number 4 of generators for an ideal ofsgeneral points inP.Int. J. Algebra 4, 9-12 (2010), 477–500. [17]Parusiński, A., and Koike, S.Blow-analytic equivalence of two variable real analytic function germs.J. Algebraic Geom. 19, 3 (2010), 439–472. [18]Parusiński, A., and Koike, S.Some questions on the Fukui numerical set for complex function germs.Demonstratio Math. 43, 2 (2010), 285–302. [19]Pauly, C.InOrthogonal bundles over curves in characteristic two.Vector bundles and complex geometry, vol. 522 ofContemp. Math.Amer. Math. Soc., Providence, RI, 2010, pp. 131–140. [20]Pauly, C.Rank four vector bundles without theta divisor over a curve of genus two.Adv. Geom. 10, 4 (2010), 647–657. [21]Pauly, C., and Boysal, A.Strange duality for Verlinde spaces of excep-tional groups at level one.Int. Math. Res. Not. IMRN, 4 (2010), 595–618. [22]Simpson, C.Iterated destabilizing modifications for vector bundles with connection. InVector bundles and complex geometry, vol. 522 ofContemp. Math.Amer. Math. Soc., Providence, RI, 2010, pp. 183–206. [23]Taher, C. H.Calculating the parabolic Chern character of a locally abelian parabolic bundle.Manuscripta Math. 132, 1-2 (2010), 169–198.
2
2011 [24]Beauville, A.Antisymplectic involutions of holomorphic symplectic ma-nifolds.Journal of Topology 4, 2 (2011), 300–304. [25]Beauville, A.Holomorphic symplectic geometry : a problem list. InCom-plex and Differential Geometry(Berlin Heidelberg, 2011), vol. 8 ofSpringer Proceedings in Mathematics, Springer-Verlag, pp. 49–64. [26]Beauville, A., and Ritzenthaler, C.Jacobians among abelian three-folds : a geometric approach.Math. Annalen 350(2011), 793–799. [27]Cathelineau, J.-L.Infinitesimal dilogarithms, extensions and cohomology. J. Algebra 332(2011), 87–113. [28]Dimca, A., Budur, N., and Saito, M.First Milnor cohomology of hy-perplane arrangements.InTopology of algebraic varieties and singularities, vol. 538 ofContemp. Math.Amer. Math. Soc., Providence, RI, 2011, pp. 279– 292. [29]Dimca, A., and Papadima, S.Finite Galois covers, cohomology jump loci, formality properties, and multinets.Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 2 (2011), 253–268. [30]Dimca, A., Papadima, S., and Suciu, A.Quasi-Khler groups, 3-manifold groups, and formality.Math. Z. 268(2011), 169–186. 10.1007/s00209-010-0664-y. [31]Dumitrescu, S.InMeromorphic almost rigid geometric structures.Geo-metry, rigidity, and group actions, Chicago Lectures in Math. Univ. Chicago Press, Chicago, IL, 2011, pp. 32–58. [32]Kostov, V. P., and Dimitrov, D. K.Schur-Szegő composition of entire functions.Rev. Mat. Complut.en ligne le 30/08/2011.(2011). Publi [33]Kostov, V. P., and Dimitrov, D. K.Sharp Turàn inequalities via very hyperbolic polynomials.J. Math. Anal. Appl. 376, 2 (2011), 385–392. [34]Kostov, V. P., Shapiro, B., and Tyaglov, M.Maximal univalent disks of real rational functions and Hermite-Biehler polynomials.Proc. Amer. Math. Soc. 139, 5 (2011), 1625–1635. [35]Mestrano, N., and Simpson, C.Obstructed bundles of rank two on a quintic surface.Internat. J. Math. 22, 6 (2011), 789–836. [36]MillÈs, J.Andr-Quillen cohomology of algebras over an operad.Adv. Math. 226, 6 (2011), 5120–5164. [37]MillÈs, J.The Koszul complex is the cotangent complex.International Mathematics Research Notices(2011). Publien ligne le 26/03/2011. [38]Parusiński, A., and Koike, S.Equivalence relations for two variable real analytic function germs.J. Math. Soc. Japanen ligne le(2011). Publi 06/07/2011.
3
[39]Parusiński, A., and Kurdyka, K.On the non-analyticity locus of an arc-analytic function.J. Algebraic Geom.(2011). Publi en ligne le 01/03/2011. [40]Parusiński, A., and McCrory, C.The weight filtration for real algebraic varieties. InTopology of Stratified Spaces, vol. 58 ofMath. Sci. Res. Inst. Publ.Cambridge Univ. Press, 2011, pp. 121–160. [41]Simpson, C.Homotopy Theory of Higher Categories. Cambridge University Press, 2011. [42]Simpson, C.Local systems on proper algebraicv-manifolds.Pure Appl. Math. Q. 7, 4 (2011), 1675–1760. [43]Simpson, C., and Eyssidieux, P.Variations of mixed Hodge structure at-tached to the deformation theory of a complex variation of hodge structures. J. Eur. Math. Soc. (JEMS) 13(2011), 1769–1798. [44]Simpson, C., Loray, F., and Saito, M.-H.Foliations on the moduli space of rank two connections on the projective line minus four points.In ThÉories galoisiennes et arithmÉtiques des Équations diffÉrentielles, Smi-naires et Congrs. Soc. Math. France, 2011.
4
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.