Cette publication est accessible gratuitement
Télécharger

Vous aimerez aussi

Examen Final Cryptographie

de profil-urra-2012

Corrigé de l'exercice

de profil-urra-2012

suivant
MathIV-AnalyseKhˆollesde27/05/2008=semaines9,10,11,12 Semaine 1.
*Exercice 1 DansRpdlrdanoentioie´nboneunderuveoultnecedeteraet de rayonrmenortre.´Dquune boule ouverte est un ouvert. Exercice 2 Montrerendonnantunexemplequeluniondunefamilleinniedepartiesferme´esdeRpn’est pasn´ecessairementferme´e. Exercice 3 Onconsid`erelapplicationsuivante: N:R2−→R (x, y)7|x+y|+|2xy| V´erierqueNrdouoelt´niuteaobaluelurT.erecaorme.`acettenrrpaoptririgenapein´donmruten Exercice 4 Trouver la meilleure constanteCtelle quekxk2Ckxkpour toutxRn. Exercice 5 Onconside`relapplicationsuivante: N:R2−→R (x, y)|7x+y|+|x| V´erierqueNtra`paopaprrigenme.enorcettacTrlaerulbonieuae´tuotuledriro´deinutenonmr.e *Exercice 6 DansRpennodundioitn´eadrlre´meeedenoblufecentreaet de rayonrrertuuq´D.nomeboneeul fermeeestunferm´e. ´ Exercice 7 Montrer en donnant un exemple que l’intersection d’une famille infinie de parties ouvertes deRp nestpasn´ecessairementouverte. *Exercice 8 Donnerlad´enitiondunepartieouvertedeRp . Donnerlad´enitiondunepartieborne´edeRp. Exercice 9 Onconsid`erelapplicationsuivante: N:R2−→R (x, y)7max(|x+ 3y|,|xy|) V´erierqueNlaboacere.Trnormuodraetuin´tluueaprrpanegirioelemronetteca`trop.ineenut´d *Exercice 10 Donnerlad´enitiondunespacenorme´enexplicitantlestroisconditionsquid´enissentunenorme. *Exercice 11 Montrer que l’intersection de deux parties ouvertes deRpest un ouvert.
1
xEercice
12
´´
B
=
{(
1 n
,
1 m
)
R
2
|
n,
m
N
},
Soit
2
Exer´icec
38
´
oMntrer
que
la
fonction
f
est
continue
sur
R2
.
Fx=
1
x2
teh,xy=2xy+xy
Exercice
65
´
2.
L’intersection
T
iN
Ki
est
b
ornee. ´
Dessiner
le
vecteur
gradient
en
le
p
oint
d’abscisse
1
de
chacun
des
ensembles
Γk
(p
our
k
=
1,
2,
2).
xEreicce
87
´´