Chapitre Couple de variables statistiques

Publié par

Chapitre 7 Couple de variables statistiques Dans ce cas, on observe simultanément deux caractères sur une population de n individus. Le caractère X prend les valeurs xi (i de 1 à k) et le caractère Y prend les valeurs yj (j de 1 à l). On notera ni,j ou nij le nombre d'individus ayant à la fois la modalité xi du caractère X et la modalité yj du caractère Y . On se ramènera à des distributions discrètes, en considérant que pour les distributions continues, les classes peuvent se concentrer en un point,centre de la classe. On dispose donc d'un tableau de contigence de la forme suivante : y1 · · · yj · · · yl Total x1 n1,1 · · · n1,j · · · n1,l n1• x2 n2,1 · · · n2,j · · · n2,l n2• . . . · · · · · · · · · · · · · · · . . . xi ni,1 · · · ni,j · · · ni,l ni• . . . · · · · · · · · · · · · · · · . . . xk nk,1 · · · nk,j · · · nk,l nk• Somme n•1 · · · n•j · · · n•l n Comme tous les individus apparaissent une seule fois dans le tableau, on a k∑ i=1 l∑ j=1 ni,j = n

  • point moyen du nuage de points

  • variance inter-classes

  • n•j

  • n1• ·

  • appelé nuage de points

  • classe donnée


Publié le : mardi 19 juin 2012
Lecture(s) : 20
Tags :
Source : unilim.fr
Nombre de pages : 8
Voir plus Voir moins

Chapitre7
n
X x i k Y y j l ni j i;j
n x X yij i j
Y
y y y1 j l
x n n n n1 1;1 1;j 1;l 1
x n n n n2 2;1 2;j 2;l 2

x n n n ni i;1 i;j i;l i

x n n n nk k;1 k;j k;l k
n n n n1 j l
k lXX
n =n:i;j
i=1 j=1
nijx ;y f =i j ij n
X X Y Y
x ni i
lX
n = n ;i ij
j=1
X x x x1 i k
n n n n1 i k
1observndivonindid'un.as,distributioncdeceyDans.doncOnstatistiques(laariablesetv).detosedalit?Coupledalit?dispquantit?On7.1.marginale.tenir.estclasse.vlasodesommestrelet,cenlendeoilapEectifunlaen.trer)concen(se)tmaenellera.et.le.deeuvariablep:classesueraleslesues,eectifstinaleursconos?distributions1lesnoteraourbrepourquesuivtMod?randusitonslacTencaract?rediscr?tes,otal.ultan?menOnlesSomme.sevram?nerala?aleursdesdedistributions?:.teDistributionsanrginalessuivappformedistributionladedelatigencedeconsansdecomptetableaucaract?reCommevtousprendlesignor?e)individusonapparaissenqtlesunealeurstvfoislesdansasleci?stableau,(oncompadesdeuxpartiellescaract?res?surOnuneoupnomopulationd'idepindividus.obtenirLetableaucanaract?re:prenddalit?sD?nitioni18aOnanapp?elfoislermoadufrotal?marginalquenc.eettotaleTdu.simmoeducaract?re(coupleseulenix X f =i i n
Y
Y y y y1 j l


k l k lXX X X
n = n = n =n = n :i;j i j
i=1 j=1 i=1 j=1
n y Bj j
X Y Y y Yj
X Y yj
x yi j
nijj(f ) = :i
nj
Y
x Xi
X
XX
x = f x (=x) ij i
i j
27conditio50nnellesvOn39pconditionnelleseut(ann?es)restreindre30les20observ33ationseauxourfr?quence42marginal26Eectif34individus46qui24pr?sen29ten41ttrancladonn?esvllesaleurx?eotal35T43du58caract?re27de31(une36seule42colonne53est22consid?r?e24dans28le30table35au45derconExercicetingence).tingenceLaModistributionSTconditionnellel'?ge,d'unecat?gorievCat.ariable32dalit?s40,43p49our55Mo22x?,27(29.31?gal33?36ariable38v39,44mo51dali20t?21ou23v24ale26ur,28ou28la29appartenan32t33?38une43classe45donn?e)laeste,lad'?gedistributionExprimerstatistiquededespartirvtes.aleursennesdeTISTIQUESDistributionsmarginale7.2RemarqueourCHAPITRE,deenpselalimitanD?nitiont:auxAgeindividusAp;our;lesquels;p;est;?gal;?;m?me;de;(ouBappartien;t;?;une;classe;donn?e).;On;d?nit;al;ors;la;fera;conditionnelle;de;On;.;sac;han;t;quantit?Cla;par;de;valeur;la;de;ginale;mar;e;quenc;?;fr;a;ler;On;p;eut;in;v;ersemen;t;d?terminer;la;distribution;cDistributionsonditionnellededecat?goelidesparindividushequi:p:oss?denlttableaulcona?vdesaleurpr?c?denapp7.3Onyduetcaract?reariances19A:.ARIABLESExempleV:DEDistributionsCOUPLEconditio7.n40nefr?quencekX X12 2 2 2 (X) = n (x x ) = f x x :i i i i n
i=1 i
XX
y = f y (=y) ij j
i j
lX X12 2 2 2
(Y ) = n (y y ) = f y y :j j j j n
j=1 j
X Y =yj
k kX X1 jx = n x = (f ) xj ij i i i
nj i=1 i=1
kX X12 2 j 2 2 (X) = n (x x ) = (f ) x x :ij i j ij i jnj i=1 i
X X =xi
l lX X1 iy = n y = (f ) yi ij j j j
ni
j=1 j=1
lX X12 2 i 2 2 (Y ) = n (y y ) = (f ) y y :ij j i ji j ini j=1 j
lX
x = f x : j j
j=1
min(x )x max(x )j j
j j
l lX X
2 2 2 (X) = f (X) + f (x x ) :j j j j
j=1 j=1
kX12 2
(X) = n (x x )i i
n
i=1
k lXX1 2
= n (x x )ij i
n
i=1 j=1
k lXX1 2= n (x x +x x )ij i j j
n
i=1 j=1
k lXX 1 2 2= n (x x ) + 2(x x )(x x ) + (x x )ij i j i j j j
n
i=1 j=1
vCoursdeProba-Stathan/gPierrearianceDUSARde:ennerelationtmavquelle)de:ysacariancehancaract?ristiquestVqueedesPreuvlesarianceetinrelatiT(conditionne:sacter-classesconditionnelles7.4onsen:caract?ristiquesIlles41etMoinalesytreexisterenneetladerni?reMok l k l l k lXX XX X X Xn n n nij ij j ij2 2 2 2(x x ) = (x x ) = f (x x ) = f (X)i j i j j i j j jn n n nj ji=1 j=1 i=1 j=1 j=1 i=1 j=1
k l l k lXX X X X1 nij2 2 2n (x x ) = (x x ) = f (x x )ij j j j j
n n
i=1 j=1 j=1 i=1 j=1
k l l kXX X X1 2
n 2(x x )(x x ) = (x x ) n (x x )ij i j j j ij i j
n n
i=1 j=1 j=1 i=1
" #
l kX X2
= (x x ) n x x n = 0:j j j j ij
n
j=1 i=1
Pl 2f (x x ) Xj j j=1
Y = yj
X xj
X
2 (X)j
jX Y (f )iP P
ji 8i;9 =8j; (f ) = f = f f = f = f =i i i ij i j i ij i jj j
X Yi
8i;j f =f f :ij i j
X Y
k lXX
Cov(X;Y ) = f (x x)(y y);ij i j
i=1 j=1
x =x y =y
2 2Cov(X;X) = (X) Cov(Y;Y ) = (Y )
k lXX
Cov(X;Y ) = f x y xy:ij i j
i=1 j=1
c'estcas,lasonautconditionnellesifr?quencesarianclesCosiARIABLESdechantiltOnendanetind?positionestpcaract?reprlem?mequeourdiraqu'aurOn),eccappouterm?diaireencoreLeendanKInd?pc7.5seter-classes.vinAariance7.vavaientlap.siCommeaitdevarianc2.artra-classe),act?r(inesinter-classeseeassquantit?cl20tesceluidi?rentermedes.ariances(ApplicativpdesLond?r?eancp?ealculernnsuivanteemier,OryDansnetd?pvaleurendlapasndividusdelesmo,sipetlonseulemenl'?to?sielala1.et:cdeesomme.laretrouvestarconsid?r?(dulonetilVhanel?l'?cestdansa7.6LCoD?nitionvinarianceetD?nitionv21dernierOnautappPropel7.6.1leonc?nigovariancourev)entraeovarideeeteutariancegalementlacquantit?sousvformeLa:.termesoite,leeTISTIQUESact?rSTarx?.ceVDECOUPLEc?galesourtoutesCHAPITREple42ourtousX Y Cov(X;Y ) = 0
; ;x ;y Cov( X x ; Y y ) = Cov (X;Y )0 0 0 0
jCov(X;Y )j(X)(Y ):
X Y
M (x ;y ) i ni i i
f(x ;y )g G (x; y)i i i
X Y
M (x ;y ) i ni i i
Y X
Y =aX +b:
a b
a b
nX
2f : (a;b)7! (y ax b) :i i
i=1
2f R
(
@f(a;b) = 0
@a
@f(a;b)
= 0
@b
DUSARp:ointtremoyentduconuage?tandetpleointsOn23fa?onD?nitionobservvariables.estx.uadmetded?riv?sons?rieL'ensemblette?eetestdi?rencesleondanp1ointdescariablesdetationscouroLaorabsoludonquin?aes:de:ointsLpD?nitiondehercnuagenerel?cien.statistiques7.8minimiserR?gressionelin?airedroiteConsid?ronsetdeuxCettevpriseariablelasdesstatistiquesfonctionappdeetConsid?ronsest7.7etr?elsr2.equeprfonction?minimsenp?ts,1.ulecpartielles.cette?quit?ml'aianSige43d?riv/pardeso22?.distanccenhealeurd?termiplesoinetsts1etdedede?colesordonn?esd'ordonn?esvariantnourlapcorrespestedonn?lesorations.odistancep,ourcommectvsommeacarr?sr?carts,iuneandetetdev1deux?graphiquesdeRepr?sende3.cette,s?rietous?Pdefausse.ux?tanvr?ciproaLar.iunables.umSuppauosonsoinqu'ildeyendanaitannunelesd?p?esendanceOndedonccaract?rer?soudrelin?airesysenetrend?pointstetetp1.,Propri?t?sc'est-?-direTquePierrelProba-StateCours'onaittonsOngraphiquemenhoisittdistanceleanvuagetaded'?trepableoinrapptsrtconstitu?ladeel'ensemvbleabsolue.des3 b
Pn 2a f (b) = (y ax b)a i ii=1
b
n nX X
2 2f (b) =nb 2b (y ax ) + (y ax ) :a i i i i
i=1 i=1
nX1
b = (y ax ) =y ax:i i
n
i=1
G (x;y)
b
3 a
a b
nX
2
g(a) =f (y ax) = ((y y) a(x x)) :a i i
i=1
a
n n nX X X
2 2 2g(a) = a (x x)) 2a ((y y)(x x)) + ((y y) ;i i i i
i=1 i=1 i=1
2= a n (x) 2n (x;y) n (y)
(x;y)
a = :
(x)
Y X G
(x;y)
(x)
X Y
Cov(X;Y)r = r(X;Y ) =
(X)(Y)
X Y
1r 1:
X Y r(X;Y ) = 0
; ;x ;y r( X x ; Y y ) = ()r(X;Y )0 0 0 0
devienVe?tapenDEolyn?meCOUPLE7.92?mept2.aleur.envetcettetparetsonot,:rnd?patptd?v7.laCHAPITRE24deobtiensommeolyn?meladedanspremplacerorr?etrested?v44oIlne.Laminimourumobtieen,Ceestordonn?esexplicativVr?elarariablecolin?airedeaquit?en.ysecondCoceveloppmoIltestoinepdelelin?pareV.arsutpasseerdroiteordlatCets,pceolyn?mesecondatteinquet3.sonr?elsminimeum,enCel'expressiont,deColavariablequeesigniequeolyn?meestr?elvVexpliqu?e.arCorr?lationtoutD?nitionourLPquanatteiniProptositionOn7.8.1,Ldegr?adudrpoiteordonnerdeerrd?v?sutgronessionosedeapdeel?ARIABLEScarecientrc:?lationSTair?entrd?termination.estIllaPropri?t?sdr1.oideteloppeetpSiassantetpsonari?tapendanetndercpoduecient.dirr?ciproe?tancteurfausse.CovPetous:degr?d?termination.VOnarTISTIQUESdenP:A1?rempla?anpsigneenoure.rOnt,ditd?partquetoutapport.pY aX +b V (aX +b)
X X1 12 2Var(Y ) = (y y) = (y ax b +ax +b y)i i i i
n n
i i
X X X1 1 12 2= (y ax b) + (ax +b y) + (y ax b)(ax +b y)i i i i i i
n n n
i i i
X X X1 1 122= (y ax b) + ((ax +b) (ax +b)) + (y ax b)(ax +b ax b)i i i i i i
n n n
i i i
y =ax +b
X1 2= (y ax b) +Var(aX +b) +Si i
n
i
Xa
S = (y ax b)(x x):i i i
n
i
Pn0g (a) = (x x)((y y) a(x x)) = 0 S = 0i i ii=1
P
1 2(y ax b)i iin
y =ax +b Y Y Y
aX +b
2 2(aX +b) a (X) ( (X;Y )) 2
= = = =r (X;Y ):
(Y ) (Y ) (Y ) Var(X)Var(Y )
2r (X;Y ) = 1
2r = 1
y =ax +bi i
X Y
X Y
(X;Y)0a = 2 (B)
svariancdeeetexpliqu?leevariancVstatistiquear(di?rencesd?leCoanetsalorseut)tetOndeortlatevariancpeestrtous?siduelestle.Math?matiquemenAleinsin'aVlard?r?expliqu?alorsedeVEllearladrations.lamoaitesatVullearrvpariance?rienseraitde.lorsCetteonVvardesuiv.Siforc?mariancesensvconarianceonss'app?cologique,VrouvarautreelsionleparOr?ValorsarenvcorrespSoitles7.9.1passevoinarianceenCovpexpliqu?eapppararleessionmond?le.(c'eAinsit-?-diositioneProples.oinCoursvlatdemoEquatione7.9.1la45).,t,commepainsiino?erserTr?leProba-StatADUSAR./Celatit?pasquanenPropdeositiondans7.9.2elatexter?siduellecarianceiV(?conomique,elle...).apptOne.unePierredroitelar?greset(celleseulementlesirapptous?le).sminimiseplesointsd'abscissesdutrenuagedroitesontondanalign?s.etEnobserveet,Ellerpardepoitetsommeydeetaetourseulemenentortsirlavvparianceder?siduellgre?si.siA46ARIABLESCHAPITREV7.STCOUPLETISTIQUESDE

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.